Quantum Gravity Emergence from Entanglement in a Multi-Fold Universe
Quantum Gravity
DOI:
https://doi.org/10.55672/hij2022pp136-219Keywords:
Quantum Gravity, Quantum Entanglement, Multi-fold Universe, Standard Model with Gravity (SMG)Abstract
We start from a hypothetical multi-fold universe UMF , where the propagation of everything is slower or equal to the speed of light and where entanglement extends the set of paths available to Path Integrals. This multifold mechanism enables EPR (Einstein-Podolsky-Rosen) “spooky actions at distance” to result from local interactions in the resulting folds. It produces gravity-like attractive effective potentials in the spacetime, between entangled entities, that are caused by the curvature of the folds. When quantized, multi-folds correspond to gravitons and they are enablers of EPR entanglement. Gravity emerges non-perturbative and covariant from EPR entanglement between virtual particles surrounding an entity. In UMF, we encounter mechanisms that predict gravity fluctuations when entanglement is present, including in macroscopic entanglements. Besides providing a new perspective on quantum gravity, when added to the Standard Model as (SMG), with non-negligible affects at its scales, and to the Standard Cosmology, UMF can contribute explanations of several open questions and challenges. It also clarifies some relationships and challenges met by other quantum gravity models and Theories of Everything. It leads to suggestions for these works. We also reconstruct the spacetime of UMF, starting from the random walks of particles in an early spacetime. UMF now appears as a noncommutative, discrete, yet Lorentz symmetric, spacetime that behaves roughly 2-Dimensional at Planck scales, when it is a graph of microscopic Planck size black holes on a random walk fractal structure left by particles that can also appear as microscopic black holes. Of course, at larger scales, spacetime appears 4-D, where we are able to explain curvature and recover Einstein’s General Relativity. We also discover an entanglement gravity-like contributions and massive gravity at very small scales. This is remarkable considering that no Hilbert Einstein action, or variations expressing area invariance, were introduced. Our model also explains why semi classical approaches can work till way smaller scale than usually expected and present a new view on an Ultimate Unification of all forces, at very small scales. We also explore opportunities for falsifiability and validation of our model, as well as ideas for futuristic applications, that may be worth considering, if UMF was a suitable model for our universe Ureal .
Downloads
References
[1] W.M. Keck Observatory, (2019, October 23). "A crisis in cosmology: New data suggests the universe expanding more rapidly than believed", https://phys.org/news/2019-10-crisis-cosmology-universe-rapidly-believed.html, Retrieved October 23, 2019.
[2] Rovelli, C. (2008), "Quantum gravity", Scholarpedia, 3(5): 7117, http://www.scholarpedia.org/article/Quantum_gravity, Retrieved March 2, 2019.
[3] B. Clegg (2019), "Dark Matter and Dark Energy: The Hidden 95% of the Universe", Icon Books Ltd
[4] Einstein, A; B Podolsky; N Rosen (1935-05-15). "Can Quantum-Mechanical Description of Physical Reality be Considered Complete?", Physical Review. 47(10): 777-780.
[5] Bell, John. "On the Einstein-Poldolsky-Rosen paradox", Physics 1 3, 195-200, Nov. 1964.
[6] Isaac Chuang and Michael Nielsen, (2000), "Quantum Computation and Quantum Information", Cambridge University Press, October 2000.
[7] Richard Feynman, (1996), "Feynman Lectures On Computation", Edited by H.G. Hey and R. W. Allen, Addison-Wesley Publishing Company.
[8] Christopher M. Hirata (April 2017). "Lecture xxxIII: Lagrangian formulation of GR", http://www.tapir.caltech.edu/~chirata/ph236/2011-12/lec33.pdf. Retrieved March 2, 2019.
[9] Edmund Bertschinger, (2000), "Symmetry Transformations, the Einstein-Hilbert Action, and Gauge Invariance", http://web.mit.edu/edbert/GR/gr5.pdf. Retrieved March 2, 2019.
[10] Erik P. Verlinde (2010), "On the Origin of Gravity and the Laws of Newton", https://arxiv.org/pdf/1001.0785.
[11] Paul Ratner, (Nov, 2016), "Remarkable New Theory Says There's No Gravity, No Dark Matter, and Einstein Was Wrong", https://bigthink.com/paul-ratner/remarkable-new-theory-says-theres-no-gravity-nqo-dark-matter-and-einstein-was-wrong, Retrieved on November 27, 2016.
[12] Chris Lee (May, 2017), "Diving deep into the world of emergent gravity", https://arstechnica.com/features/2017/05/emergentgravityanddarkmatterexplainedbyexciteduniverse/, Retrieved May 23, 2017.
[13] Sabine Hossenfelder (Feb, 2017) , "Recent Claims Invalid: Emergent Gravity Might Deliver A Universe Without Dark Matter", https://www.forbes.com/sites/startswithabang/2017/02/28/is-dark-matter-about-to-be-killed-by-emergent-gravity. Retrieved on November 1, 2018.
[14] Erik Verlinde, (2016), "Emergent Gravity and the Dark Universe", https://arxiv.org/pdf/1611.02269v2.
[15] Eliano Pessa (2009), "The concept of particle in Quantum Field theory", https://arxiv.org/pdf/0907.0178v1.
[16] "Lecture 1: Introduction to QFT and Second Quantization", https://rdmc.nottingham.ac.uk/bitstream/handle/internal/102/Quantum%20Field%20Theory/output1.pdf, Retrieved on Oct. 27, 2019.
[17] P.J.H. Denteneer, 2008. "Second Quantization. Lecture notes with course Quantum Theory", http://wwwhome.lorentz.leidenuniv.nl/-pjhdent/SecQuant08.pdf, Retrieved on Oct. 27, 2019.
[18] Ted Jacobson, (1995), "Thermodynamics of Spacetime: The Einstein Equation of State", https://arxiv.org/pdf/gr-qc/9504004v2.
[19] de Haro, Sebastian; Dieks, Dennis; 't Hooft, Gerard; Verlinde, Erik (2013). "Forty Years of String Theory Reflecting on the Foundations". Foundations of Physics. 43 (1): 1-7.
[20] Greene, Brian (2000). "The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory". Random House. ISBN 978-0-9650888-0-0
[21] "Quantum Gravity", Wikipedia, https://en.wikipedia.org/wiki/Quantum_gravity. Retrieved March 2, 2019.
[22] R. Loll (2019), "Quantum Gravity from Causal Dynamical Triangulations: A Review", https://arxiv.org/pdf/1905.08669v1.
[23] H. W. Hamber, 2009, "Quantum Gravitation. The Feynman Path Integral Approach", Springer.
[24] Hrvoje Nikoli, (2013). "Relativistic Quantum Mechanics and Quantum Field Theory". https://arxiv.org/pdf/1205.1992v1
[25] Rovelli, Carlo (2004). "Quantum Gravity". Cambridge University Press.
[26] Malament, D.B. (1996). "In defense of dogma: Why there cannot be a relativistic quantum mechanics of (localizable) particles". In Clifton, R.K. (Ed.). "Perspectives on quantum reality" (pp. 1-10). Kluwer: Dordrecht.
[27] Daniel Cavalcanti Santos, (2008). "Entanglement: from its mathematical description to its experimental observation", PhD Thesis, Universitat de Barcelona, https://www.icfo.eu/images/publications/DT_08_01.pdf. Retrieved on March 4, 2019.
[28] J. M. Maldacena, "Black Holes and Holography in String Theory". In: B. Duplantier and V. Rivasseau (Eds): "Seminaire Poincare", 61-67. (2004).
[29] J.M. Maldacena, "The Large N Limit Of Superconformal Field Theories And Supergravity", Adv. Theor. Math. Phys. 2 (1998) 231.
[30] Muxin Han and Ling Yan Hung. (2017), "Loop quantum gravity, exact holographic mapping, and holographic entanglement entropy". Phys. Rev.d, 95(2), 2017.
[31] Y. Jack Ng, (2016), "Holographic Theory of Gravity and Cosmology", https://arxiv.org/pdf/1610.06236v1.
[32] Ted Jacobson and Renaud Parentani (2003), "Horizon Entropy", https://arxiv.org/pdf/gr-qc/0302099v1.
[33] Ted Jacobson, (1999), "On the Nature of Black Hole Entropy", https://arxiv.org/pdf/gr-qc/9908031v2.
[34] T.Padmanabhan, (2010), "Thermodynamical Aspects of Gravity: New insights", https://arxiv.org/pdf/0911.5004v2.
[35] "Summary of the Standard Model", http://bolvan.ph.utexas.edu/-vadim/Classes/11f/SM.pdf. Retrieved March 2, 2019.
[36] Wikipedia, "Mathematical formulation of the Standard Model", https://en.wikipedia.org/wiki/Mathematica_formulation_of_the_Standard_Model. Retrieved March 2, 2019.
[37] "Standard Model", Wikipedia, https://en.wikipedia.org/wiki/Standard_Model. Retrieved March 2, 2019.
[38] A. Hebecker and J. Hisano (2016). "Grand Unified Theories, Revised", Chapter 16, http://wwwpdg.lbl.gov/2016/reviews/rpp2016-rev-guts.pdf. Retrieved March 2, 2019.
[39] Haber, Howie. (2015), "Supersymmetry, Part I (Theory)",http://pdg.lbl.gov/2015/reviews/rpp2015-rev-susy-1-theory.pdf. Retrieved 8 March 2019.
[40] "Theory of everything", https://en.wikipedia.org/wiki/Theory_of_everything. Retrieved March 2, 2019.
[41] Rovelli, C. (2001). "Notes for a brief history of quantum gravity", https://arxiv.org/pdf/gr-qc/0006061v3.
[42] Maldacena, Juan (2005). "The Illusion of Gravity". Scientific American. 293 (5): 56-63.
[43] Weinberg, S., Israel, W. (Ed.). (1979). "Ultraviolet divergences in quantum theories of gravitation". United Kingdom: University Press.
[44] Assaf Shomer (2007). "A pedagogical explanation for the non-renormalizability of gravity", https://arxiv.org/pdf/0709.3555v2.
[45] Anselmi, Damiano (2017). "On the quantum field theory of the gravitational interactions", Journal of High Energy Physics, Vol 2017, 6, pp. 86.
[46] Richard P. Feynman, Albert R. Hibbs, Daniel F. Styer, (2010). "Quantum Mechanics and Path Integrals". Mineola, NY: Dover Publications.
[47] Malham, Simon. (2015). "An introduction to Lagrangian and Hamiltonian mechanics". 10.13140/RG.2.1.2914.8003.
[48] Hans Stephani (2004). "Relativity 3ed: An Introduction to Special and General Relativity 3rd Edition", Cambridge University Press; 3rd. edition.
[49] Leonard Susskind, (2017). "Dear Qubitzers, GR=QM", https://arxiv.org/pdf/1708.03040.
[50] Susskind, Leonard (2016). "Copenhagen vs Everett, Teleportation, and ER=EPR", Fortschritte der Physik, 64 (6-7): 551-564. https://arxiv.org/pdf/1604.02589.
[51] Richard MacKenzie (2000). "Path Integral Methods and Applications", https://arxiv.org/pdf/quant-ph/0004090.
[52] P.A.M. Dirac, (1933). "The Lagrangian in Quantum Mechanics", Physikalische Zeitschrift der Sowjetunion, Band 3, Heft 1.
[53] R.P. Feynman, "Space-Time Approach to Non-Relativistic Quantum Mechanics", Reviews of Modern Physics 20, 367 1948.
[54] "Chapter 9 - General Relativity: The Field Theory Approach", https://javierrubioblog.files.wordpress.com/2015/12/chapter9.pdf. Retrieved Feb. 16, 2019.
[55] Pierre Gosselin, Janos Polonyi, (1998). "Path Integral for Relativistic Equations of Motion", Annals of Physics, Volume 268, Issue 2, 20 September 1998, Pages 207-224.
[56] Ian Redmount, Wai-Mo Suen, Kenneth Young (1999). "Ambiguities in Quantizing a Classical System", https://arxiv.org/pdf/gr-qc/9904042v1.
[57] K S Mallesh, S Chaturvedi, V Balakrishnan, R Simon and N Mukunda. (2011). "Symmetries and conservation laws in classical and quantum mechanics", Resonance, March 2011, Volume 16, Issue 3, pp 254-273.
[58] Hagen Kleinert, "Functional-Integral Representation of Quantum Field Theory", http://users.physik.fu-berlin.de/-kleinert/b6/psfiles/Chapter-13-functint.pdf . Retrieved dec 12, 2019.
[59] Karen Crowther and Niels Linnemann, (2017), "Renormalizability, fundamentality and a final theory: The role of UV-completion in the search for quantum gravity", https://arxiv.org/pdf/1705.06777v2.
[60] Marc H. Goroff and Augusto Sagnotti, (1986), "The Ultraviolet Behavior of Einstein Gravity", Nuclear Physics B266 (1986) 709-736.
[61] Cumrun Vafa, (2005), "The String Landscape and the Swampland", https://arxiv.org/pdf/hep-th/0509212v2
[62] The Reference Frame, (2017), "Competent formal theorists know they can't rely on the existence of the Lagrangian", https://motls.blogspot.com/2017/11/competent-formal-theorists-know-they.html. Retrieved December 18, 2019.
[63] Yuji Tachikawa, "What is Quantum Field Theory?", Kavli IPMU 10th anniversary symposium 16 - 18 October 2017.
[64] "Principle of Least Action", http://www.damtp.cam.ac.uk/user/db275/LeastAction.pdf. Retrieved March 2, 2019.
[65] Jaffe, Arthur, (2000). "Constructive Quantum Field Theory". Review article from Mathematical Physics.
[66] Baez, John C., Segal, I.E. and Zhou, Z., "Introduction to Algebraic and Constructive Quantum Field Theory", Princeton U. Press, 1992
[67] Sourav Chatterjee, (2018), "Yang-Mills for probabilists", https://arxiv.org/pdf/1803.01950v1
[68] Gerald V. Dunne, Mithat Unsal, (2016). "New Methods in QFT and QCD: From Large-N Orbifold Equivalence to Bions and Resurgence", https://arxiv.org/pdf/1601.03414.
[69] James Glimm and Arthur Jaffe (2012). "Quantum physics: a functional integral point of view", Springer
[70] Stephen J. Summers, (2016). "A Perspective on Constructive Quantum Field Theory", https://arxiv.org/pdf/1203.3991v2
[71] P. H. Eberhard and R. R. Ross (1989). "Quantum Field Theory Cannot Provide Faster-Than-Light Communication", Foundations of Physics Letters, Vol. 2, No. 2, 1989
[72] Dick R. (2012), "Klein-Gordon and Dirac Fields. In: Advanced Quantum Mechanics". Graduate Texts in Physics. Springer, New York, NY
[73] Scott Watson, (2001). "Relativistic Path Integrals and the Klein-Gordon Equation", http://www.het.brown.edu/people/watson/papers/rel_path_int.ps. Retrieved Feb. 23, 2019.
[74] Ian H. Redmount, Wai-Mo Suen (1992). "Path integration in relativistic quantum mechanics", https://arxiv.org/pdf/grqc/9210019v1.
[75] Guangqing Bi, Yuekai Bi (2010). "Stationary Solutions of the Klein-Gordon Equation in a Potential Field", https://arxiv.org/pdf/1008.4224v4.
[76] "The Klein-Gordon field and its variational principle", http://www.physics.usu.edu/torre/Classical_Field_Theory/Lectures/ 02_KG.pdf. Retrieved Feb. 24, 2019.
[77] Hagen Kleinert, (2004). "Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets", World Scientific, ISBN 978-981-4365-26-0.
[78] Frank Antonsen and Karsten Bormann, (1996). "Propagators in Curved Space", https://arxiv.org/pdf/hep-th/9608141v1
[79] T. S. Bunch and Leonard Parker, (1979). "Feynman propagator in curved spacetime: A momentum-space representation", Physical Review volume 20, Number 10, 15 November 1979.
[80] Mayeul Arminjon, (2015). "On the Hamiltonian and energy operators in a curved spacetime, especially for a Dirac particle", J. Phys.: Conf. Ser. 626 012030
[81] "Distribution (mathematics)", Wikipedia, https://en.wikipedia.org/wiki/Distribution_(mathematics). Retrieved on Feb 23, 2019.
[82] Sergio Albeverio and Sonia Mazzucchi (2011), "Path Integral: mathematical aspects", Scholarpedia, 6(1):8832, http://www.scholarpedia.org/article/Path_integral:_mathematical_aspects. Retrieved on Feb 23, 2019.
[83] Carlo Rovelli and Francesca Vidotto, (2014), "Covariant Loop Quantum Gravity: An elementary introduction to Quantum Gravity and Spinfoam Theory", Cambridge University Press.
[84] Jean Zinn-Justin (2009), "Path Integral", Scholarpedia, 4(2):8674.
[85] Michael Taylor. "Functional Analysis course", http://mtaylor.web.unc.edu/notes/functional-analysis-course/. Retrieved on Feb. 23, 2019.
[86] Maldacena, Juan and Susskind, Leonard (2013). "Cool horizons for entangled black holes", Fortsch. Phys. 61 (9): 781-811. https://arxiv.org/pdf/1306.0533.
[87] Ning Bao and Jason Pollack and Grant N. Remmen, (2015), "Wormhole and entanglement (non-)detection in the ER=EPR correspondence", https://arxiv.org/pdf/1509.05426.
[88] Salwa Alsaleh, Lina Alasfar, (2016), "ER= EPR and Non-Perturbative Action Integrals for Quantum Gravity", https://arxiv.org/pdf/1611.02573.
[89] Einstein, A. and Rosen, N. (1935). "The particle problem in the general theory of relativity". Physical Review, 48(1):73.
[90] Eduardo Guendelman, Emil Nissimov, Svetlana Pacheva, Michail Stoilov, (2016),"Einstein-Rosen "Bridge" Revisited and Lightlike Thin-Shell Wormholes", https://arxiv.org/pdf/1611.04336v2
[91] Ning Bao, Aidan Chatwin-Davies, Jason Pollack, Grant N. Remmen, (2018), "Traversable Wormholes as Quantum Channels: Exploring CFT Entanglement Structure and Channel Capacity in Holography", https://arxiv.org/pdf/1808.05963v2.
[92] Mathieu Baillif, Alexandre Gabard (2008), "Manifolds: Hausdorffness versus homogeneity", Proceedings of the American Mathematical Society, 2008, vol. 136, no. 3, p. 1105-1111.
[93] Mark Sharlow, (2007). "The quantum mechanical Path Integral: Toward a realistic interpretation", https://core.ac.uk/download/pdf/11921794.pdf. Retrieved on March 3, 2019.
[94] Georges Obied, Hirosi Ooguri, Lev Spodyneiko, Cumrun Vafa, (2018), "De Sitter Space and the Swampland", https://arxiv.org/pdf/1806.08362v3.
[95] Laszlo E. Szabo, (2007), "The Einstein-Podolsky-Rosen Argument and the Bell Inequalities", https://arxiv.org/pdf/0712.1318v1.
[96] Fiorenzo Bastianelli and Peter van Nieuwenhuizen, (2006). "Path Integrals and Anomalies in Curved Space", Cambridge University Press.
[97] J.A. Shi ett, (2015), "Standard Model Lagrangian (including neutrino mass terms)", http://einstein-schrodinger.com/Standard_Model.pdf, Retrieved December20, 2019.
[98] Y. Aharonov, H. Pendleton, A. Peterson, (1970), "Deterministic Quantum Interference Experiments", Int. J. Th. Phys. 3, 443.
[99] Steven Weinstein, (2008). "Nonlocality without nonlocality", https://arxiv.org/pdf/0812.0349v2.
[100] Mojtaba Ghadimi, Michael J. W. Hall and Howard M. Wiseman, (2018), "Nonlocality in Bell's Theorem, in Bohm's Theory, and in Many InteractingWorlds Theorising", https://arxiv.org/pdf/1807.01568v2.
[101] D. Bohm, (1952), "A Suggested Interpretation of the Quantum Theory in Terms of 'Hidden Variables' I", Phys. Rev. 85 (1952) 166.
[102] D. Bohm, (1952), "A Suggested Interpretation of the Quantum Theory in Terms of 'Hidden Variables' II", Phys. Rev. 85 (1952) 180.
[103] Castro Carlos Perelman, (2018), "Bohm's Potential, Classical/Quantum Duality and Repulsive Gravity", 10.13140/RG.2.2.20005.76006.
[104] HUGH EVERETT (1973), "The Many- Worlds Interpretation of Quantum Mechanics", Princeton University Press
[105] Frank J. Tipler, (2014). "Quantum nonlocality does not exist". Proceedings of the National Academy of Sciences, 2014.
[106] Fine, Arthur, "The Einstein-Podolsky-Rosen Argument in Quantum Theory", The Stanford Encyclopedia of Philosophy (Winter 2017 Edition), Edward N. Zalta (ed.), URL = https://plato.stanford.edu/archives/win2017/entries/qt-epr/. Retrieved on March 4. 2019.
[107] Bohr, N., (1935), "Can quantum-mechanical description of physical reality be considered complete?", Physical Review, 48: 696-702.
[108] Sukanya Sinha and Rafael D. Sorkin, (1991), "A Sum-Over-Histories Account of an EPR(B) Experiment", Found. Phys. Letter, 4:303.
[109] C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. Wootters, (1993). "Teleporting an Unknown Quantum State via Dual Classical and EPR Channels", Phys. Rev. Lett. vol. 70, pp 1895-1899, 1993.
[110] D. Bouwmeester et al., (1997), "Experimental quantum teleportation", Nature 390, 575-9 (1997).
[111] Fiorenzo Bastianelli, Olindo Corradini, (2017). "On the simplified Path Integral on spheres", https://arxiv.org/pdf/1708.03557v2.
[112] Reartes, Walter. (2004). "Path Integral Quantization of the Sphere", 10.1007/978-1-4419-9058-7_14.
[113] Christian Grosche and Frank Steiner (1995). "How to solve Path Integrals in quantum mechanics", Journal of Mathematical Physics 36, 2354 (1995).
[114] J. A. Wheeler and R. P. Feynman, (1945), "Interaction with the absorber as the mechanism of radiation", Rev. Mod. Phys. 17, 157 (1945).
[115] Dong Yang, (2006), "A simple proof of monogamy of entanglement", https://arxiv.org/pdf/quant-ph/0604168v2.
[116] IBM Research, "Quantum Teleportation", https://researcher.watson.ibm.com/researcher/view_group.php?id=2862. Retrieved March 7, 2019.
[117] D. N. Matsukevich, P. Maunz, D. L. Moehring, S. Olmschenk, and C. Monroe, (2008). "Bell inequality violation with two remote atomic qubits", https://arxiv.org/pdf/0801.2184v1.
[118] S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, C. Monroe1, (2009). "Quantum Teleportation Between Distant Matter Qubits", https://arxiv.org/pdf/0907.5240v1.
[119] Elise Crull, (2018), "You thought quantum mechanics was weird: check out entangled time", https://aeon.co/ideas/you-thought-quantum-mechanics-was-weird-check-out-entangled-time. Retrieved on March 10, 2019.
[120] Christoph Simon, (2002), "Natural entanglement in Bose-Einstein condensates", Phys. Rev. A 66, 052323, Published 25 November 2002.
[121] D. Klauber, (2010), "Derivation of the Feynman Propagator", Student Guide to Quantum Field Theory, Chapter 3, Sandtrove Press.
[122] Jan Louis, "Quantum Field Theory I", http://www.desy.de/-jlouis/Vorlesungen/QFTI10/QFTI.pdf. Retrieved Jan 20, 2019.
[123] L. S. Schulman (2005), "Techniques and Applications of Path Integration", Dover Publications (December 27, 2005).
[124] "Propagator", Wikipedia, https://en.wikipedia.org/wiki/Propagator. Retrieved on February 20, 2019.
[125] Michael E. Peskin and Daniel V. Schroeder. "An Introduction To Quantum Field Theory, Student Economy Edition (Frontiers in Physics)", CRC Press; 1 edition (November 3, 2015).
[126] J.D. Franson, (2008). "Generation of Entanglement Outside of the Light Cone", Journal of Modern Optics 55, 2117-2140.
[127] David Tong, "Quantum Field Theory", http://www.damtp.cam.ac.uk/user/tong/qft.html. Retrieved on February 24, 2019.
[128] Matthias Sonnleitner, Nils Trautmann, and Stephen M. Barnett, "Will a Decaying Atom Feel a Friction Force?", Phys. Rev. Lett. 118, 053601 - Published 3 February 2017.
[129] M. Bordag, U. Mohideen, V.M. Mostepanenko, "New developments in the Casimir effect", Phys. Rep. 353, 1-205, 2001.
[130] Mark D. Roberts, (2001), "Vacuum Energy", https://arxiv.org/pdf/hep-th/0012062v3.
[131] Matthew D. Schwartz (2014), "Quantum Field Theory and the Standard Model", Cambridge University Press, 2014.
[132] Reeh, H., Schlieder, S. (1961). "Bemerkungen zur Unitareiquivalenz von Lorentz invarianten Feldern". Nuovo Cimento, 22, 1051.
[133] Hegerfeldt, G.C. (1998), "Causality, particle localization and positivity of the energy", In Bohm, A., Doebner, H.-D., Kielanowski, P. (Eds.). "Irreversibility and causality: Semigroups and rigged Hilbert spaces", (pp. 238-245). Springer, New York.
[134] Hegerfeldt, G.C. (1998). "Instantaneous spreading and Einstein causality in quantum theory", Annalen der Physik, 7, 716.
[135] Ugo Moschella, (2005). "The de Sitter and anti-de Sitter Sightseeing Tour", Seminaire Poincare 1 (2005) 1 - 12. http://www.bourbaphy.fr/moschella.pdf. Retrieved on February 17, 2019.
[136] A. Einstein, "Kosmologische Betrachtungen zur allgemeinen Relativittstheorie", Sitzungsber. Preuss . Akad. Wiss., Berlin, 142 (1917).
[137] J. M. Maldacena, "Black Holes and Holography in String Theory". In: B. Duplantier and V. Rivasseau (Eds): "Seminaire Poincare", 61-67. (2004).
[138] J. M. Maldacena, (1998), "The Large N Limit Of Superconformal Field Theories And Supergravity", Adv. Theor. Math. Phys. 2 (1998) 231.
[139] "String theory", Wikipedia, https://en.wikipedia.org/wiki/String_theory. Retrieved on March 12, 2019.
[140] Maldacena, Juan (2005). "The Illusion of Gravity". Scientific American., 293 (5): 56-63.
[141] Jan Zaanen, Yan Liu, Ya Sun K.Schalm; 2015, "Holographic Duality in Condensed Matter Physics", Cambridge University Press, Cambridge.
[142] Elli Pomoni, (2010). "AdS/CFT beyond the N = 4 SYM paradigm", PhD thesis, Stony Brook University.
[143] van Raamsdonk, Mark (2010). "Building up spacetime with quantum entanglement", Gen. Rel. Grav. 42 (14): 2323-2329. https://arxiv.org/pdf/1005.3035.
[144] P. N. Kaloyerou, (1995). "Causal Interpretation of the Modified Klein-Gordon Equation", Foundations of Physics. Vol. 25, No. 10. 1995.
[145] A. Einstein (1925). "Quantentheorie des einatomigen idealen Gases". Sitzungsberichte der Preussischen Akademie der Wissenschaften 1: 3.
[146] Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. (April 1957). "Microscopic Theory of Superconductivity". Physical Review. 106 (1): 162-164.
[147] V. L. Ginzburg & L.D. Landau (1950). "On the theory of superconductivity". Zhurnal Eksperimental noi i Teoreticheskoi Fiziki. / JETP 20: 1064.
[148] Qijin Chen, Jelena Stajic, Shina Tan, K. Levin, (2004), "BCS-BEC crossover: From high temperature superconductors to ultracold superfluids", https://arxiv.org/pdf/cond-mat/0404274v3.
[149] Sachdev S, (2013), "Strange and stringy", Sci Am., 2013 Jan, 308(1):44-51.
[150] Itai Panas, (2012), "Superatom Representation of High-TC Superconductivity", Physica C: Superconductivity Volume 480, October 2012, Pages 137-143.
[151] J. Zaanen and al. (2006), "Towards a complete theory of high T-c", Nature Physics volume 2, pages 138-143.
[152] M. Ulmke, V. Janis, D. Vollhardt (1994). "Anderson-Hubbard Model in d=∞", https://arxiv.org/pdf/cond-mat/9411034v1.
[153] Tobias Wenger, (2012), "Holographic Superconductivity Effective Field Theoretic Approach to Layered Superconductors", MS Thesis, Chalmers University of Technology Gothenburg, Sweden.
[154] Rong-Gen Cai, Li Li, Li-Fang Li, Run-Qiu Yang. (2015), "Introduction to holographic superconductor models", https://arxiv.org/pdf/1502.00437v3.
[155] Mohit Randeria and Edward Taylor, (2014). "BCS-BEC Crossover and the Unitary Fermi Gas", https://arxiv.org/pdf/1306.5785v3.
[156] Clovis Jacinto de Matos, Martin Tajmar (2006). "Gravitomagnetic London Moment and the Graviton Mass inside a Superconductor", https://arxiv.org/pdf/cond-mat/0602591.
[157] Ryder, L.H.(1996), "Quantum Field Theory", Cambridge University Press, 2nd Edition, 1996
[158] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, "Unconventional superconductivity in magic-angle graphene superlattices", Nature 556, 43 (2018).
[159] Maddury Somayazulu, Muhtar Ahart, Ajay K Mishra, Zachary M. Geballe, Maria Baldini, Yue Meng, Viktor V. Struzhkin, Russell J. Hemley. (2018). "Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures", https://arxiv.org/pdf/1808.07695v3.
[160] A. P. Drozdov, V. S. Minkov, S. P. Besedin, P. P. Kong, M. A. Kuzovnikov, D. A. Knyazev, M. I. Eremets (2018). "Superconductivity at 215 K in lanthanum hydride at high pressures". https://arxiv.org/pdf/1808.07039v1.
[161] Bogdan Opanchuk, Rodney Polkinghorne, Oleksandr Fialko, Joachim Brand, Peter D.Drummond (2013). "Quantum simulations of the early universe", https://arxiv.org/pdf/1305.5314v2.
[162] Jean-Paul Blaizot, Bin Wu, and Li Yan (2014), "Quark production, Bose-Einstein condensates and thermalization of the quark-gluon plasma", Nucl.Phys. A930 (2014) 139-162.
[163] ALICE Collaboration, (2018), "Anisotropic flow in xe-xe collisions at sqrtsNN =5.44 TeV", https://arxiv.org/pdf/1805.01832v2.
[164] "Quark-gluon plasma", Wikipedia, https://en.wikipedia.org/wiki/Quark%E2%80%93gluon_plasma. Retrieved April 6, 2019.
[165] A D Linde, (1984). "The inflationary universe", Rep. Prog. Phys., Vol 47, pp 925-986, 1984.
[166] A. Guth, (2018), "The New Inflationary Universe", MIT Course, Physics 8.286: The Early Universe.
[167] "Chronology of the universe", https://en.wikipedia.org/wiki/Chronology_of_the_universe. Retrieved on April 6. 2019.
[168] "Quantum Computing", Wikipedia, https://en.wikipedia.org/wiki/Quantum_computing. Retrieved April 7, 2019.
[169] Domenico Giulini, (2012), "Equivalence Principle, Quantum Mechanics, and Atom-Interferometric Tests", Quantum Field Theory and Gravity pp 345-370. Springer, Basel.
[170] E. Kajari, N.L. Harshman, E.M. Rasel, S. Stenholm, G. Süssmann, W.P. Schleich, (2010), "Inertial and gravitational mass in quantum mechanics", https://arxiv.org/pdf/1006.1988v2.
[171] Carroll, S., "Spacetime and Geometry. An Introduction to General Relativity", (Pearson Education Limited, 2014).
[172] Rashmi Shivni, (2016). "The deconstructed Standard Model equation", https://www.symmetrymagazine.org/article/the-deconstructed-standard-model-equation. Retrieved on February 24, 2019.
[173] Gernot Eichmann, (2014), "Poincaré group", http://cftp.ist.utl.pt/gernot.eichmann/2014-hadron-physics/hadron-app-2.pdf. Retrieved on April 15, 2019.
[174] Sougato Bose, (2018). "A Spin Entanglement Witness for Quantum Gravity", https://arxiv.org/pdf/1707.06050v1.
[175] C. Marletto and V. Vedral, (2018). "Gravitationally-induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity". https://arxiv.org/pdf/1707.06036v2.
[176] C. Anastopoulos and B. L. Hu. (2018). "Comment on "A Spin Entanglement Witness for Quantum Gravity" and on "Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity" ". https://arxiv.org/pdf/1804.11315v2.
[177] Moore, Thomas A., (2013), "A General Relativity Workbook", University Science Books.
[178] Mordehai Milgrom, (2014), "The MOND paradigm of modified dynamics", Scholarpedia, 9(6):31410.
[179] Tower Wang, (2012), "Modified entropic gravity revisited", https://arxiv.org/pdf/1211.5722v1.
[180] Zhi-Wei Wang and Samuel L. Braunstein., (2018), "Surfaces away from horizons are not thermodynamic", Nature Communications 9, Article number: 2977 (2018).
[181] Pardo, Kris (2017-06-02). "Testing Emergent Gravity with Isolated Dwarf Galaxies" (Report). https://arxiv.org/pdf/1706.00785.
[182] Wikipedia, "Divergence theorem", https://en.wikipedia.org/wiki/Divergence_theorem. Retrieved December 27, 2019.
[183] Wikipedia, "Gauss's law for gravity", https://en.wikipedia.org/wiki/Gauss%27s_law_for_gravity. Retrieved December 27, 2019.
[184] Charles W. Misner and John A. Wheelers, (1957), "Classical Physics as Geometry. Gravitation, Electromagnetism, Unquantized Charge, and Mass as Properties of Curved Empty Space", Annals Of Physics, 2, 525-603.
[185] Luca Bombelli, Rafael Sorkin, Joohan Lee, (1986), "Quantum source of entropy for black holes", Physical Review D, 1986.
[186] Saurya Das, S. Shankaranarayanan, (2007), "Entanglement as a source of black hole entropy", https://arxiv.org/pdf/gr-qc/0610022v2.
[187] Christopher Eling, Raf Guedens, Ted Jacobson, (2006), "Non-equilibrium Thermodynamics of Spacetime", https://arxiv.org/pdf/gr-qc/0602001v1.
[188] Kristan Jensen, Andreas Karch (2013), "The holographic dual of an EPR pair has a wormhole", https://arxiv.org/pdf/1307.1132.
[189] Padmanabhan, T., (2008), "Gravity: The inside story". Gen.Rel.Grav. 40 (2008) 2031-2036, Int.J.Mod.Phys. D17 (2009) 2585-2591.
[190] ChunJun Cao, Sean M. Carroll, Spyridon Michalakis, (2016). "Space from Hilbert Space: Recovering Geometry from Bulk Entanglement", https://arxiv.org/pdf/1606.08444v3.
[191] J. Makela, (2009), "A Simple Quantum-Mechanical Model of Spacetime I: Microscopic Properties of Spacetime", https://arxiv.org/pdf/0805.3952v3.
[192] J. Makela, (2009) "A Simple Quantum-Mechanical Model of Spacetime II: Thermodynamics of Spacetime", https://arxiv.org/pdf/ 0805.3955v3.
[193] J. Makela (2008), "Partition Function of Spacetime", https://arxiv.org/pdf/0810.4910v1.
[194] Jarmo Makela (2010), "Notes Concerning "On the Origin of Gravity and the Laws of Newton" by E. Verlinde (https://arxiv.org/pdf/1001.0785)", https://arxiv.org/pdf/1001.3808v3.
[195] Viqar Husain, R. B. Mann, (2008), "Thermodynamics and phases in quantum gravity", https://arxiv.org/pdf/0812.0399v2.
[196] Magdalena Zych, Fabio Costa, Igor Pikovski and Caslav Brukner, (2019), "Bell's theorem for temporal order", Nature Communications volume 10, Article number: 3772.
[197] Lee Smolin, (2015). "Quantum mechanics and the principle of maximal variety". https://arxiv.org/pdf/1506.02938v1.
[198] Lee Smolin, (2019). "A casual theory of views". https://arxiv.org/pdf/1712.04799v2.
[199] Lee Smolin, (2011). "A real ensemble interpretation of quantum mechanics", https://arxiv.org/pdf/1104.2822v1.
[200] xiao Dong, Ling Zhou, (2018). "Spacetime as the optimal generative network of quantum states: a roadmap to QM=GR?", https://arxiv.org/pdf/1804.07908v1.
[201] G. Evenbly and G. Vidal. (2011). "Tensor network states and geometry". Journal of Statistical Physics, 145(4):891-918, 2011.
[202] Roger Penrose, (1972), "On the nature of quantum geometry", in "Magic Without Magic", ed. J. Klauder, Freeman, San Francisco.
[203] Fotini Markopoulou, Lee Smolin (2004). "Quantum Theory from Quantum Gravity". https://arxiv.org/pdf/gr-qc/0311059v2.
[204] E. Nelson, "Derivation of the Schrodinger equation from Newtonian mechanics", Phy. Rev., 150, 1079 (1969); "Quantum Fluctuations", Princeton Series in Physics, Princeton University Press (1985).
[205] Hermann Nicolai and Kasper Peeters, (2006). "Loop and Spin Foam Quantum Gravity: A Brief Guide for Beginners", https://arxiv.org/pdf/hep-th/0601129v2.
[206] Hou Y. Yau, (2007 & 2016), "Quantum Theory from a Space-Time Wave", https://arxiv.org/pdf/0706.0190 v2 and v4.
[207] Ekert A., Jozsa R., Penrose R., and Penrose Roger (1999). "Quantum computation, entanglement and state reduction". 356 Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[208] Tejinder P. Singh, (2018). "Space and Time as a Consequence of GRW Quantum Jumps". https://arxiv.org/pdf/1806.01297v4.
[209] Tejinder P. Singh, (2018). "Space-time from Collapse of the Wave-function", https://arxiv.org/pdf/1809.03441v2.
[210] Wayne C. Myrvold, (2014). "What is a Wavefunction?", http://philsci-archive.pitt.edu/10750/. Retrieved on April 22, 2019.
[211] G N Ord, (1983), "Fractal space-time: a geometric analogue of relativistic quantum mechanics", J. Phys. A: Math. Gen. 16 (1983) 1869-1884.
[212] Laurent Nottale, (2010), "Scale Relativity and Fractal Space-Time: Theory and Applications", Found of Sciences, June 2010, Volume 15, Issue 2, pp 101-152.
[213] Michael R. Douglas, Nikita A. Nekrasov, (2001), "Noncommutative Field Theory", https://arxiv.org/pdf/hep-th/0106048v4.
[214] Louise Dolan, Chiara R. Nappi, (2033), "Strings and Noncommutativity", https://arxiv.org/pdf/hep-th/0302122v2.
[215] Florian Girelli, Franz Hinterleitner and Seth A. Major, (2012), "Loop Quantum Gravity Phenomenology: Linking Loops to Observational Physics", "Symmetry, Integrability and Geometry: Methods and Applications" SIGMA 8 (2012), 098, 73 pages.
[216] "Dark Energy", Wikipedia, https://en.wikipedia.org/wiki/Dark_energy. Retrieved on February 27, 2019.
[217] Joel Primack, "Historical Introduction to ΛCDM Cosmology", http://physics.ucsc.edu/-joel/Primack-Lect1-LCDM_History.pdf. Retrieved on May 12, 2019.
[218] Qiaoling Yang, (2012), "Axion BEC: A Model Beyond CDM", PhD Thesis, UNIVERSITY OF FLORIDA.
[219] Svend Erik Rugh, Henrik Zinkernagel, (2000). "The Quantum Vacuum and the Cosmological Constant Problem", https://arxiv.org/pdf/hep-th/0012253v1.
[220] Wm. Robert Johnston, (2008). "Calculations on space-time curvature within the Earth and Sun", http://www.johnstonsarchive.net/relativity/stcurve.pdf. Retrieved on May 6, 2019.
[221] J. V. Narlikar, Ganeshkhind, J.-C. Pecker and J.-P. Vigier, (1991), "Some Consequences of a Spatially Varying Cosmological Constant in a Spherically Symmetric Distribution of Matter", J. Astrophys. Astr. 12, 7-16.
[222] Hongya Liu and Paul S. Wesson, (2001). "Universe Models WITH A Variable Cosmological And A Big Bounce", The Astrophysical Journal, 562 : 16, 2001 November 20
[223] "Dark Matter", Wikipedia, https://en.wikipedia.org/wiki/Dark_matter. Retrieved on February 27, 2019.
[224] M. Tajmar, F. Plesescu, K. Marhold, C.J. de Matos. (2006), "Experimental Detection of the Gravitomagnetic London Moment", https://arxiv.org/pdf/gr-qc/0603033v1.
[225] Martin Tajmar, Florin Plesescu, Bernhard Seifert, Klaus Marhold (2006), "Measurement of Gravitomagnetic and Acceleration Fields Around Rotating Superconductors", https://arxiv.org/pdf/gr-qc/0610015.
[226] M. Tajmar, F. Plesescu, B. Seifert, R. Schnitzer, I. Vasiljevich, (2008), "Search for Frame-Dragging-Like Signals Close to Spinning Superconductors", https://arxiv.org/pdf/0707.3806v9.
[227] R.M. Wald, (1984), "General Relativity", The University of Chicago Press.
[228] Wytler Cordeiro dos Santos, (2016), "Introduction to Einstein-Maxwell equations and the Rainich conditions", https://arxiv.org/pdf/1606.08527v1.
[229] I. C. Jardima, R. R. Landim, (2013), "Deviation of Large Scale Gravitoelectromagnetic Field in Post-Newtonian Approximation", https://arxiv.org/pdf/1304.6385v2.
[230] Juan Maldacena, Alexey Milekhin, Fedor Popov, (2018). "Traversable wormholes in four dimensions", https://arxiv.org/pdf/1807.04726v2.
[231] Faizuddin Ahmed, Bidyut Bikash Hazarika and Debojit Sarma (2016), "The anti-de Sitter spacetime as a time machine", Eur. Phys. J. Plus (2016) 131:230.
[232] G. 't Hooft, (1993), "Dimensional Reduction in Quantum Gravity", https://arxiv.org/pdf/gr-qc/9310026v2.
[233] Ahmed Almheiri, xi Dong, Daniel Harlow, (2014), "Bulk Locality and Quantum Error Correction in AdS/CFT", https://arxiv.org/pdf/1411.7041v3.
[234] Fernando Pastawski, Beni Yoshida, Daniel Harlow, John Preskill, (2015), "Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence", https://arxiv.org/pdf/1503.06237v2.
[235] Ahmed Almheiri, (2018), "Holographic Quantum Error Correction and the Projected Black Hole Interior", https://arxiv.org/pdf/1810.02055v2.
[236] Sabine Hossenfelder, (2018), "Lost in Math: How Beauty Leads Physics Astray", Basic Books.
[237] Lee Smolin, (2006), "The Trouble with Physics: The Rise of String Theory, The Fall of a Science, and What Comes Next", Mariner Books.
[238] Peter Woit, (2007), "Not Even Wrong: The Failure of String Theory and the Search for Unity in Phyisical Law", Basic Books
[239] Wikipedia, "Proton decay", https://en.wikipedia.org/wiki/Proton_decay. Retrieved, January 3, 2020.
[240] Ethan Siegel and al., (2020), "How Certain Are We That Protons Don't Decay?", https://www.forbes.com/sites/startswithabang/2020/01/03/how-certain-are-we-that-protons-dont-decay. Retrieved, January 3, 2020.
[241] W. Zhu, Zhoushen Huang, Yin-chen He, (2018), "Reconstructing Entanglement Hamiltonian via Entanglement Eigenstates", https://arxiv.org/pdf/1806.08060.
[242] Fabio Maria Mele, (2016), "Quantum Metric and Entanglement on Spin Networks", https://arxiv.org/pdf/1703.06415v1.
[243] Johannes Thueringen, (2015), "Discrete quantum geometries and their effective dimension", Ph.D. Thesis, Humboldt-Universitat zu Berlin
[244] Helge Kragh, (2002), "Quantum Generations: A History of Physics in the Twentieth Century", Princeton University Press; Reprint edition (March 24, 2002).
[245] K. A. Milton, (2015), "Schwinger's Quantum Action Principle: From Dirac's formulation through Feynman's Path Integrals, the Schwinger-Keldysh method, quantum field theory, to source theory", https://arxiv.org/pdf/1503.08091v1.
[246] A. M. Ozorio de Almeida, (2006), "Entanglement in phase space", https://arxiv.org/pdf/quant-ph/0612029v1.
[247] The reference frame, (2012), "Why Feynman's Path Integral doesn't contradict the uncertainty principle", https://motls.blogspot.com/2012/06/why-feynmans-path-integral-doesnt.html. Retrieved Dec 15, 2019.
[248] Lee Smolin, (2006), "The Trouble with Physics", Houghton Mifflin Harcourt.
[249] Lee Smolin, (2005), "The case for background independence", https://arxiv.org/pdf/hep-th/0507235v1.
[250] Peter Collas, (1977), "General relativity in two- and three-dimensional space-times", American Journal of Physics, Vol. 45, No.9, September 1977.
[251] S. Carlip, (2004), "Quantum Gravity in 2+1 Dimensions: The Case of a Closed Universe", https://arxiv.org/pdf/gr-qc/0409039v2.
[252] Zhengjun xi, Yongming Li and Heng Fan, (2015), "Quantum coherence and correlations in quantum system", Nature, Scientific Reports volume 5, Article number: 10922.
[253] Dai, J., Leigh, R. G., and Polchinski, J. (1989). "New connections between string theories", Modern Physics Letters A, 04(21): 2073-2083.
[254] Anze Zaloznik, (2012), "Kaluza-Klein Theory", http://mafija.fmf.uni-lj.si/seminar/files/2011_2012/KaluzaKlein_theory.pdf. Retrieved Jan 12, 2020.
[255] Edward Witten, (1995), "String Theory Dynamics In Various Dimensions", https://arxiv.org/pdf/hep-th/9503124v2.
[256] David Bailint and Alex Love, (1987), "Kaluza-Klein theories", Rep. Prog. Phys. 50 (1987) 1087-1170.
[257] Alain Aspect, (2004), "Bell's Theorem: The Naive View Of An Experimentalist", https://arxiv.org/pdf/quant-ph/0402001v1.
[258] Julia Cramer, Christian Schiitte-Niitgen, (2010), "Experimental Violations of Bell's Inequalities", https://qudev.phys.ethz.ch/static/content/courses/QSIT10/presentations/QSIT-BellsInequality.pdf. Retrieved on Jan 12, 2020.
[259] W.M. Stuckey, Michael Silberstein, Timothy McDevitt and Ian Kohler, (2019), "Why the Tsirelson Bound? Bub's Question and Fuchs' Desideratum", https://arxiv.org/pdf/1807.09115v7.
[260] Katrin Becker, Melanie Becker and John L. Schwarz, (2007), "String Theory and M-Theory. A Modern Introduction", Cambridge University Press.
[261] Rahul Sawant, Joseph Samuel, Aninda Sinha, Supurna Sinha, Urbasi Sinha, (2014), "Non-classical paths in interference experiments", https://arxiv.org/pdf/1308.2022v2.
[262] R. Wald, (1980), "Quantum gravity and time reversibility", Phys. Rev. D21 (1980), 2742.
[263] Nick E. Mavromatos, (2005), "CPT Violation: Theory and Phenomenology", https://arxiv.org/pdf/hep-ph/0504143v1.
[264] Jaeger, Gregg (2019). "Are virtual particles less real?", Entropy, 21 (2): 141.
[265] Mary Bell , Shan Gao, (2016), "Quantum Nonlocality and Reality. 50 Years of Bell's Theorem", Cambridge University Press.
[266] H. Reeh, S. Schlieder, (1961), "Bemerkungen zur unitaraquivalenz von lorentzinvarianten feldern", Il Nuovo Cimento (1955-1965), December 1961, Volume 22, Issue 5, pp 1051-1068.
[267] Joseph J. Bisognano and Cyvind H. Wichmann, (1975), "On The Duality Condition For A Hermitian Scalar Field", Journal of Mathematical Physics, Vol. 16, No. 4, 985 – 1007.
[268] Wikipedia, "Reeh-Schlieder theorem", https://en.wikipedia.org/wiki/Reeh-Schlieder_theorem. Retrieved Nov. 19, 2019.
[269] nLab, "Reeh-Schlieder theorem", https://ncatlab.org/nlab/show/Reeh-Schlieder+theorem. Retrieved Nov. 19, 2019.
[270] Luciano Combi, Gustavo E. Romeroa, (2017), "Is Teleparallel Gravity really equivalent to General Relativity?", https://arxiv.org/pdf/1708.04569v1.
[271] V. C. De Andrade, L. C. T. Guillen and J. G. Pereira, (2000), "Teleparallel Gravity: An Overview", https://arxiv.org/pdf/gr-qc/0011087v1.
[272] Bo-Sture K. Skagerstam, (1976), "Some remarks concerning the question of localization of elementary particles", International Journal of Theoretical Physics, 15(3):213-230, February 1976.
[273] Hans Halvorson, Rob Clifton, (2001), "No place for particles in relativistic quantum theories?", https://arxiv.org/pdf/quant-ph/0103041v1.
[274] Martin Schottenloher, (2008), "A Mathematical Introduction to Conformal Field Theory (Lecture Notes in Physics)", Springer; 2nd edition (November 17, 2008).
[275] Makoto Natsuume, (2015), "AdS/CFT Duality User Guide (Lecture Notes in Physics)", Springer; 2015 edition (April 2, 2015).
[276] Horatiu Nastase, (2007), "Introduction to AdS-CFT", https://arxiv.org/pdf/0712.0689v2
[277] John Campbell,(2018),"The Black Book of Quantum Chromodynamics: A Primer for the LHC Era", Oxford University Press.
[278] Walter Greiner, Stefan Schramm, Eckart Stein, (2007), "Quantum Chromodynamics", Springer.
[279] Jared Kaplan, (2016), "QFT Lectures Notes", Department of Physics and Astronomy, Johns Hopkins University.
[280] Frank Wilczek, (2012), "Origins of Mass", https://arxiv.org/pdf/1206.7114v2.
[281] Diego Bettoni, (2012), "Masses and the Higgs Mechanism", http://www.fe.infn.it/-bettoni/particelle/Strong/HiggsMechanism.pdf. Retrieved on January 20, 2020.
[282] Magdalena Zych, Caslav Brukner, (2015), "Quantum formulation of the Einstein Equivalence Principle", https://arxiv.org/pdf/1502.00971v1.
[283] A. Einstein, " Uber das Relativitatsprinzip und die aus demselben gezogenen Folgerungen". Jahrb. f. Rad. und Elekt. 4, 411 (1907).
[284] Wikipedia, "Equivalence principle", https://en.wikipedia.org/wiki/Equivalence_principle. Retrieved on January 20, 2020.
[285] L. Prochaska, x. Li, D. C. MacFarland, A. M. Andrews, M. Bonta, E. F. Bianco, S. Yazdi, W. Schrenk, H. Detz, A. Limbeck, Q. Si, E. Ringe, G. Strasser, J. Kono, S. Paschen, (2018), "Singular charge fluctuations at a magnetic quantum critical point", https://arxiv.org/pdf/1808.02296v1.
[286] P. W. Anderson, (1963), "Plasmons, Gauge Invariance, and Mass", Phys. Rev. 130, 439.
[287] Yao Wang, Yi-Jun Chang, Jun Gao, Yong-Heng Lu, Zhi-Qiang Jiao, Fang-Wei Ye, xian-Min Jin, (2019), "Observation of Magic Angle and Wall State in Twisted Bilayer Photonic Graphene", https://arxiv.org/pdf/1911.09174v1.
[288] F. W. Hehl, (1973), "Spin and torsion in general relativity: I. Foundations", General Relativity and Gravitation. July 1973, Volume 4, Issue 4, pp 333-349.
[289] Friedrich W. Hehl, Paul von der Heyde, and G. David Kerlick, (1976), "General relativity with spin and torsion: Foundations and prospects", Reviews of Modern Physics, Vol. 48, No. 3, July 1976.
[290] Stefan Lippoldt, 2016, "Fermions in curved spacetimes", Thesis, Friedrich-Schiller-Universitat Jena.
[291] Stefano Lucat, Tomislav Prokopec, (2015), "Cosmological singularities and bounce in Cartan-Einstein theory", https://arxiv.org/pdf/1512.06074v1.
[292] Yi-Fu Cai, Salvatore Capozziello, Mariafelicia De Laurentis, Emmanuel N. Saridakis, (2016), "f(T) teleparallel gravity and cosmology", https://arxiv.org/pdf/1511.07586v2.
[293] Eckehard W. Mielke, (2013), "Is Einstein-Cartan Theory Coupled to Light Fermions Asymptotically Safe?", Journal of Gravity, Volume 2013, Article ID 812962.
[294] M. Gockeler, T. Schiicker, (1987), "Differential Geometry, Gauge Theories and Gravity", Crambridge University Press.
[295] Andrzej Trautman, (2006), "Einstein-Cartan Theory", https://arxiv.org/pdf/gr-qc/0606062v1
[296] Nikodem Poplawski, (2012), "Nonsingular, big-bounce cosmology from spinor-torsion coupling", https://arxiv.org/pdf/1111.4595v2.
[297] Jordan L. Cubero, Nikodem J. Poplawski, (2019), "Analysis of big bounce in Einstein-Cartan cosmology", https://arxiv.org/pdf/1906.11824v1.
[298] Ilya L. Shapiro, Poliane M. Teixeira, (2014), "Quantum Einstein-Cartan theory with the Holst term", https://arxiv.org/pdf/1402.4854v2
[299] Marc Geiller and Karim Noui, (2013), "A note on the Holst action, the time gauge, and the Barbero-Immirzi parameter", https://arxiv.org/pdf/1212.5064v2
[300] Danilo Jimenez Rezende, Alejandro Perez, (2009), "4d Lorentzian Holst action with topological terms", https://arxiv.org/pdf/0902.3416v1.
[301] Ilya L. Shapiro, (1998), "Torsion: theory and possible observables", https://arxiv.org/pdf/hep-th/9811072v1.
[302] Bahram Mashhoon, (2001), "Gravitoelectromagnetism: A Brief Review", https://arxiv.org/pdf/gr-qc/0311030v2.
[303] Ignazio Ciufolini and John Archibald Wheeler, (1995), "Gravitation and Inertia", Princeton University Press.
[304] david G. Boulware and S. Deser, (1975), "Classical General Relativity Derived from Quantum Gravity", Annals Of Physics, 89, 193-240 (1975).
[305] V.M. Red'kov, N.G. Tokarevskaya, V.V. Kisel, (2011), "Graviton in a Curved Space-Time Background and Gauge Symmetry", https://arxiv.org/pdf/1109.1382v1.
[306] Per Kraus and E. T. Tomboulis, (2002), "Photons and Gravitons as Goldstone Bosons, and the Cosmological Constant", https://arxiv.org/pdf/hep-th/0203221v1.
[307] Claudia de Rham, Gregory Gabadadze, Andrew J. Tolley, (2010), "Resummation of Massive Gravity", https://arxiv.org/pdf/1011.1232v2.
[308] Cianfrani Francesco, Giovanni Montani, and Lecian Orchidea Maria, (2014), "Canonical Quantum Gravity: Fundamentals and Recent Developments", World Scientific Publishing Company, Incorporated.
[309] xi Dong, Eva Silverstein, Gonzalo Torroba, (2018), "De Sitter Holography and Entanglement Entropy", https://arxiv.org/pdf/1804.08623v2.
[310] Brian Clegg, (2019), "Dark Matter and Dark Energy: The Hidden 95% of the Universe", Icon Books Ltd.
[311] J. D. Bekenstein, (1973), "Black Holes and Entropy", Phys. Rev. D7 (1973) 2333.
[312] Jacob D. Bekenstein, (1974), "Generalized second law of thermodynamics in black-hole physics", Physical Review D, Volume 9, Number 12, 15 June 1974.
[313] S. W. Hawking, (1975), "Particle Creation by Black Holes", Commun. math. Phys. 43, 199-220 (1975).
[314] Piotr T. Chru±ciel, Erwann Delay, Gregory J. Galloway, Ralph Howard, (2000), "Regularity of Horizons and The Area Theorem", https://arxiv.org/pdf/gr-qc/0001003v2.
[315] G. W. Gibbons' and S. W. Hawking, (1977), "Cosmological event horizons, thermodynamics, and particle creation", Physical Review D, Volume 15, Number 10.
[316] Ted Jacobson, (2000) ,"On the Nature of Black Hole Entropy", https://arxiv.org/pdf/gr-qc/9908031v2.
[317] Ryu Shinsei, Takayanagi Tadashi, (2006), "Aspects of Holographic Entanglement Entropy". Journal of High Energy Physics., 2006 (8).
[318] L. Susskind, (1994), "The World as a Hologram", https://arxiv.org/pdf/hep-th/9409089v2.
[319] Paul Dirac, (1931), "Quantised Singularities in the Electromagnetic Field". Proc. Roy. Soc., (London) A 133, 60 (1931).
[320] Yang C.N. (1996), "Magnetic Monopoles, Fiber Bundles, and Gauge Fields". In: Newman H.B., Ypsilantis T. (eds) "History of Original Ideas and Basic Discoveries in Particle Physics". NATO ASI Series (Series B: Physics), vol 352. Springer, Boston, MA.
[321] "Magnetic monopole", Wikipedia, https://en.wikipedia.org/wiki/Magnetic_monopole. Retrieved March 10, 2020.
[322] Bryce DeWitt, (2013), "The Global Approach to Quantum Field Theory", Oxford U. Press, New York, 2003. Vols. 1 and 2.
[323] Richard Feynman, (2002), "Feynman Lectures On Gravitation", Westview Press; 1 edition (June 20, 2002).
[324] I. I. Bigi and A. I. Sanda, (2009), "CP Violation", Cambridge University Press.
[325] Alberto Rojo, Anthony Bloch (2018), "The Principle of Least Action: History and Physics", Cambridge University Press.
[326] Francisco S. N. Lobo, Gonzalo J. Olmo, D. Rubiera-Garcia, (2014), "Microscopic wormholes and the geometry of entanglement", https://arxiv.org/pdf/1402.5099v2.
[327] Fabrizio Tamburini, Ignazio Licata, (2019), "General Relativistic Wormhole Connections from Planck-Scales and the ER = EPR Conjecture", https://arxiv.org/pdf/1912.12424v1.
[328] Jiunn-Wei Chen, Sichun Sun, Yun-Long Zhang, (2016), "Bell Inequality in the Holographic EPR Pair", https://arxiv.org/pdf/1612.09513v3
[329] Hilary Greaves and Teruji Thomas, (2014), "On the CPT theorem", Studies in History and Philosophy of Modern Physics 45, (2014), 46-65.
[330] Streater, R. and Wightman, A., (1964), "PCT, spin and statistics, and all that". NewYork: W.A.Benjamin.
[331] Stefan Hollands, (2004), "PCT Theorem for the Operator Product Expansion in Curved Spacetime", Commun. Math. Phys. 244, 209-244 (2004).
[332] Wheeler, John Archibald (1963). "Geometrodynamics". New York: Academic Press.
[333] Edward Witten, (1982), "Instability of the Kaluza-Klein vacuum", Nuclear Physics B, Volume 195, Issue 3, 22 February 1982, Pages 481-492.
[334] Malcolm Fairbairn, Robert Hogan, (2014), "Electroweak Vacuum Stability in light of BICEP2", https://arxiv.org/pdf/1403.6786v3.
[335] John G. Cramer, (2016),"The Quantum Handshake: Entanglement, Nonlocality and Transactions", Springer.
[336] Graham P. Collins, (2017), "The Many Interpretations of Quantum Mechanics", Scientific American, Nov 2017.
[337] D.Z. Albert, Y. Aharonov, S. D'Amato. Phys. Rev. Lett. 54, 5 (1985), "Curious New Statistical Prediction of Quantum Mechanics", Phys. Rev. Lett. 54, 5.
[338] Y. Aharonov, P.G. Bergmann, J.L. Lebowitz, (1964),"Time Symmetry in the Quantum Process of Measurement", Phys. Rev. 134, B1410 (1964).
[339] Padmanabhan, T., (1994), "Path Integral for the relativistic particle and harmonic oscillators", Found Phys 24, 1543-1562 (1994).
[340] G Rengaraj, U Prathwiraj, Surya Narayan Sahoo, R Somashekhar and Urbasi Sinha, (2018), "Measuring the deviation from the superposition principle in interference experiments", New J. Phys. 20 (2018).
[341] John Preskill, (1984), "Magnetic Monopoles", Ann. Rev. Nucl. Part. Sci., 1984. 34:461-530.
[342] Ivan Agullo, Adrian del Rio, and Jose Navarro-Salas, (2017), "Electromagnetic Duality Anomaly in Curved Spacetimes", Phys. Rev. Lett. 118, 111301.
[343] J. L. Hewett et al. (2014), "Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 2: Intensity Frontier", https://arxiv.org/pdf/1401.6077v1.
[344] Rune Fisker, (2016), "Grand Unification Dream Kept at Bay", https://www.quantamagazine.org/no-proton-decay-means-grand-unification-must-wait-20161215/. Retrieved on Nov 8, 2019.
[345] A. A. Saharian, "Quantum Field Theory In Curved Spacetime", http://training.hepi.tsu.ge/rtn/activities/sources/LectQFTrev.pdf. Retrieved March 5, 2020.
[346] Dag-Morten Sj0str0m, (2013), "Bosons and Fermions in Curved Spacetime", Physics Thesis, Norwegian University of Science and Technology, May 2013.
[347] Wikipedia, "Bimetric gravity", https://en.wikipedia.org/wiki/Bimetric_gravity. Retrieved on January 23, 2020.
[348] Rosen, Nathan (1973), "A bi-metric Theory of Gravitation", Gen. Rel. Grav., 4 (6): 435-447.
[349] P. C. Aichelburg and R. U. Sexl, (1971), "On the Gravitational Field of a Massless Particle", General Relativity and Gravitation, Vol. 2, No. 4 (1971), pp. 303-312.
[350] N. A. Voronov and I. Yu. Kobzarev, (1973), "On the gravitational field of a massless particle", JETP, 1973, Vol. 37, No. 6, p. 953.
[351] W. B. Bonnor, (1969), "The Gravitational Field of Light", Comm. Math. Phys. 13, 163-174.
[352] Venzo de Sabbata, C Sivaram, (1994), "Spin and Torsion in Gravitation", World Scientific.
[353] R. T. Hammond, (2010), "The necessity of torsion in gravity", International Journal of Modern Physics D Vol. 19, No. 14 (2010) 2413-2416.
[354] A. Trautman, (1973), "Spin and Torsion May avert Gravitational Singularities", Nature Physical Science, Vol. 142, 7-8.
[355] E.J. Beggs, S. Majid, (2009), "*-Compatible Connections in Noncommutative Riemannian Geometry", https://arxiv.org/pdf/0904.0539v2.
[356] Suraj N. Gupta, (1954), "Gravitation and Electromagnetism", Phys. Rev., Vol 96, N. 6.
[357] S. Weinberg, (1965), "Photons and. Gravitons in Perturbation Theory: Derivation of Maxwell's and Einstein's Equations", Phys. Rev., Vol 138, N. 4B.
[358] Ashtekar A. and Ranjeet S. Tate, (1991), "Lectures on nonperturbative canonical gravity", World Scientific Pub Co Inc.
[359] Flip Tanedo, (2011), "Helicity, Chirality, Mass, and the Higgs", Quantum Diaries, https://www.quantumdiaries.org/2011/06/19/helicity-chirality-mass-and-the-higgs/. Retrieved on November 10, 2019.
[360] Wikipedia, "Belinfante-Rosenfeld stress-energy tensor", https://en.wikipedia.org/wiki/Belinfante%E2%80%93Rosenfeld_stress%E2%80%93energy_tensor. Retrieved December 12, 2019.
[361] The reference frame, (2019), "No global symmetries in QG 2019", https://motls.blogspot.com/2019/05/no-global-symmetries-in-qg-2019.html. Retrieved on December 11, 2019.
[362] Daniel Harlow, Hirosi Ooguri, (2018), "Symmetries in quantum field theory and quantum gravity", https://arxiv.org/pdf/1810.05338v2.
[363] Lee C. Loveridge, (2004), "Physical and Geometric Interpretations of the Riemann Tensor, Ricci Tensor, and Scalar Curvature", https://arxiv.org/pdf/gr-qc/0401099v1.
[364] John M. Lee, (2018), "Introduction to Riemannian Manifolds", Springer.
[365] Rosen, Nathan (1940). "General Relativity and Flat Space. I". Physical Review, 57 (2): 147-150.
[366] Zwiebach, Barton (2003). "A First Course in String Theory". Cambridge University Press.
[367] Edmund Bertschinger, (2002), "Symmetry Transformations, the Einstein-Hilbert Action, and Gauge Invariance", Physics 8.962, MIT.
[368] Bronstein M, (1936), "Quantentheorie schwacher Gravitationsfelder", Phys. Z. Sowjetunion 9 ,140-157.
[369] Bronstein M P, (1936), "Kvantovanie gravitatsionnykh voln" (Quantization of Gravitational Waves), Zh. Eksp. Tear. Fiz. 6, 195.
[370] Paul Sutter, (2020), "Is string theory worth it?", https://www.space.com/is-string-theory-worth-it.html. Retrieved on May 05, 2020.
[371] Tamiaki Yoneya, (1974), "Connection of Dual Models to Electrodynamics and Gravidynamics", Progress of Theoretical Physics, Vol. 51, No. 6.
[372] J. Scherk and J. H. Schwarz, (1974), "Dual Models for Non-Hadrons", Nuclear Physics BS1 (1974) I18-144.
[373] Yaakov Y. Fein et al. (2019), "Quantum superposition of molecules beyond 25 kDa", Nature Physics.
[374] C. F. Ockeloen-Korppi, E. Damskagg, J.-M. Pirkkalainen, A. A. Clerk, F. Massel, M. J. Woolley, M. A. Sillanpaa, (2017), "Entangled massive mechanical oscillators", https://arxiv.org/pdf/1711.01640v1.
[375] Claudia de Rham, (2014), "Massive Gravity", https://arxiv.org/pdf/1401.4173v2.
[376] Kurt Hinterbichler, (2011), "Theoretical Aspects of Massive Gravity", https://arxiv.org/pdf/1105.3735v2
[377] Fierz, M. and Pauli, W., (1939), "On relativistic wave equations for particles of arbitrary spin in an electromagnetic field", Proc. Roy. Soc. Lond., A173, 211-232.
[378] Stephen W. Hawking, Malcolm J. Perry, Andrew Strominger, (2016), "Soft Hair on Black Holes", https://arxiv.org/pdf/1601.00921v1.
[379] Eddington, A. (1935). "The Nature of the Physical World". MacMilan.
[380] Wikipedia, "Rotating black hole", https://en.wikipedia.org/wiki/Rotating_black_hole. Retrieved on February, 17, 2019.
[381] Wikipedia, "Charged black hole", https://en.wikipedia.org/wiki/Charged_black_hole. Retrieved on February, 17, 2019.
[382] Jacob D. Bekenstein, (1997), "Quantum Black Holes as Atoms", https://arxiv.org/pdf/gr-qc/9710076v2.
[383] Radhakrishnan C. Nair, 92006), "Photon as a black hole", SFIN A 1 (2007) 321-326.
[384] A.Burinskii, (2007), "Kerr Geometry as Space-Time Structure of the Dirac Electron", https://arxiv.org/pdf/0712.0577v1.
[385] Burinskii, Alexander, (2008), "The Dirac-Kerr-Newman electron", https://arxiv.org/pdf/0507109v4.
[386] J. Makela, P. Repo, M. Luomajoki, J.Piilonen, (2000), "Quantum-mechanical model of the Kerr-Newman black hole", https://arxiv.org/pdf/gr-qc/0012055v1.
[387] Wikipedia, "Black hole electron", https://en.wikipedia.org/wiki/Black_hole_electron. Retrieved on April 13, 2020.
[388] Richard G. Milner, (2013), "A Short History of Spin", https://arxiv.org/pdf/1311.5016v1.
[389] Wikipedia, "Spin (physics)", https://en.wikipedia.org/wiki/Spin_(physics). Retrieved on May 7, 2020.
[390] Jean-Marc Levy-Leblond, (1967), "Nonrelativistic Particles and Wave Equations", Commun. math. Phys. 6.
[391] von W. Gordon, (1928), "Der Strom der Diracschen Elektronentheorie", Z. Phys., 50, 630 (1928).
[392] F.J. Belifante, (1939), "On the spin Angular Momentum of Mesons", Physica, VI, N9.
[393] L. Rosenfeld, (1940), "On the energy-momentum tensor", Mem. Acad. Royal Belg., 18, N6.
[394] H.C. Ohanian, (1984), "What is spin?", Am. J. Phys., 54, (6), 1986.
[395] Edouard Manoukian, (2016), "Quantum Field Theory I: Foundations and Abelian and Non-Abelian Gauge Theories", Springer.
[396] Aneesh Manohar and Howard Georgi, (1984), "Chiral Quarks and The Non-Relativistic Quark Model", Nuclear Physics B234 189-212.
[397] W. Rory Coker, "Chiral Symmetry Breaking!", https://web2.ph.utexas.edu/-coker2/index.files/chiralsb.htm. Retrieved, November 10, 2019.
[398] David Tong, (2018), "Lectures on Gauge Theory", http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html. Retrieved on November 10, 2019.
[399] S. Weinberg, (1964), "Derivation of Gauge Invariance and The Equivalence Principle from Lorentz Invariance and the S-Matrix", Phys. Letters, Vol 9, N. 4.
[400] M.C. Gonzalez-Garcia and M. Yokoyama, (2019), "14. Neutrino Masses, Mixing, and Oscillations", in M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and (2019) update.
[401] Sidney Coleman, (1977), "Fate of the false vacuum: Semiclassical theory", Phys. Rev. D 15, 2929.
[402] Curtis G. Callan, Jr. and Sidney Coleman, (1977), "Fate of the false vacuum. II. First quantum corrections", Phys. Rev. D 16, 1762.
[403] The reference frame, (2011), "Bubble of nothing and other catastrophes", https://motls.blogspot.com/2011/10/bubble-of-nothing-and-other.html. Retrieved on April 14, 2020.
[404] J.R. Espinosa, G. Giudice, A. Riotto, (2017), "Cosmological implications of the Higgs mass measurement", https://arxiv.org/pdf/0710.2484v1.
[405] Carlos Mergulhao Jr., (1995), "Neutrino Helicity Flip in a Curved Space-time", General Relativity and Gravitation volume 27, pages 657-667.
[406] Steven Weinberg, (2020), "Models of Lepton and Quark Masses", https://arxiv.org/pdf/2001.06582v1.
[407] J. Ambjorn, J. Jurkiewicz, R. Loll, (2005), "Reconstructing the Universe", https://arxiv.org/pdf/hep-th/0505154v2.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Hyperscience International Journal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.