Quantum Gravity Emergence from Entanglement in ‎ a Multi-Fold Universe

Quantum Gravity

Authors

  • Stephane H. Maes  ESSEM Research, United States (USA)‎

DOI:

https://doi.org/10.55672/hij2022pp136-219

Keywords:

Quantum Gravity‎, Quantum Entanglement‎, Multi-fold Universe, Standard Model with Gravity (SMG)‎

Abstract

We start from a hypothetical multi-fold universe UMF , where the propagation of everything is slower or equal to the speed of light and where entanglement extends the set of paths available to Path Integrals. This multifold mechanism enables EPR (Einstein-Podolsky-Rosen) “spooky actions at distance” to result from local interactions in the resulting folds. It produces gravity-like attractive effective potentials in the spacetime, between entangled entities, that are caused by the curvature of the folds. When quantized, multi-folds correspond to gravitons and they are enablers of EPR entanglement. Gravity emerges non-perturbative and covariant from EPR entanglement between virtual particles surrounding an entity. In UMF, we encounter mechanisms that predict gravity fluctuations when entanglement is present, including in macroscopic entanglements. Besides providing a new perspective on quantum gravity, when added to the Standard Model as (SMG), with non-negligible affects at its scales, and to the Standard Cosmology, UMF can contribute explanations of several open questions and challenges. It also clarifies some relationships and challenges met by other quantum gravity models and Theories of Everything. It leads to suggestions for these works. We also reconstruct the spacetime of UMF, starting from the random walks of particles in an early spacetime. UMF now appears as a noncommutative, discrete, yet Lorentz symmetric, spacetime that behaves roughly 2-Dimensional at Planck scales, when it is a graph of microscopic Planck size black holes on a random walk fractal structure left by particles that can also appear as microscopic black holes. Of course, at larger scales, spacetime appears 4-D, where we are able to explain curvature and recover Einstein’s General Relativity. We also discover an entanglement gravity-like contributions and massive gravity at very small scales. This is remarkable considering that no Hilbert Einstein action, or variations expressing area invariance, were introduced. Our model also explains why semi classical approaches can work till way smaller scale than usually expected and present a new view on an Ultimate Unification of all forces, at very small scales. We also explore opportunities for falsifiability and validation of our model, as well as ideas for futuristic applications, that may be worth considering, if UMF was a suitable model for our universe Ureal  .

Downloads

Download data is not yet available.

Author Biography

Stephane H. Maes , ESSEM Research, United States (USA)‎

Stephane H. Maes 

ESSEM Research, United States (USA)

 

References

‎[1] ‎ W.M. Keck Observatory, (2019, October 23). "A ‎crisis in cosmology: New data suggests the universe ‎expanding more rapidly than believed", ‎https://phys.org/news/2019-10-crisis-cosmology-‎universe-rapidly-believed.html, Retrieved October ‎‎23, 2019.‎

‎[2] ‎ Rovelli, C. (2008), "Quantum gravity", ‎Scholarpedia, 3(5): 7117, ‎http://www.scholarpedia.org/article/Quantum_gravity, Retrieved March 2, 2019. ‎

‎[3] ‎ B. Clegg (2019), "Dark Matter and Dark Energy: ‎The Hidden 95% of the Universe", Icon Books Ltd ‎

‎[4] ‎ Einstein, A; B Podolsky; N Rosen (1935-05-15). ‎‎"Can Quantum-Mechanical Description of Physical ‎Reality be Considered Complete?", Physical ‎Review. 47(10): 777-780.‎

‎[5] ‎ Bell, John. "On the Einstein-Poldolsky-Rosen ‎paradox", Physics 1 3, 195-200, Nov. 1964. ‎

‎[6] ‎ Isaac Chuang and Michael Nielsen, (2000), ‎‎"Quantum Computation and Quantum Information", ‎Cambridge University Press, October 2000. ‎

‎[7] ‎ Richard Feynman, (1996), "Feynman Lectures On ‎Computation", Edited by H.G. Hey and R. W. Allen, ‎Addison-Wesley Publishing Company.‎

‎[8] ‎ Christopher M. Hirata (April 2017). "Lecture xxxIII: ‎Lagrangian formulation of GR", ‎http://www.tapir.caltech.edu/~chirata/ph236/2011-‎‎12/lec33.pdf. Retrieved March 2, 2019. ‎

‎[9] ‎ Edmund Bertschinger, (2000), "Symmetry ‎Transformations, the Einstein-Hilbert Action, and ‎Gauge Invariance", ‎http://web.mit.edu/edbert/GR/gr5.pdf. Retrieved ‎March 2, 2019. ‎

‎[10] ‎ Erik P. Verlinde (2010), "On the Origin of Gravity ‎and the Laws of Newton", ‎https://arxiv.org/pdf/1001.0785. ‎

‎[11] ‎ Paul Ratner, (Nov, 2016), "Remarkable New Theory ‎Says There's No Gravity, No Dark Matter, and ‎Einstein Was Wrong", https://bigthink.com/paul-‎ratner/remarkable-new-theory-says-theres-no-‎gravity-nqo-dark-matter-and-einstein-was-wrong, ‎Retrieved on November 27, 2016. ‎

‎[12] ‎ Chris Lee (May, 2017), "Diving deep into the world ‎of emergent gravity", ‎https://arstechnica.com/features/2017/05/emergentgravityanddarkmatterexplainedbyexciteduniverse/, ‎Retrieved May 23, 2017. ‎

‎[13] ‎ Sabine Hossenfelder (Feb, 2017) , "Recent Claims ‎Invalid: Emergent Gravity Might Deliver A ‎Universe Without Dark Matter", ‎https://www.forbes.com/sites/startswithabang/2017/‎‎02/28/is-dark-matter-about-to-be-killed-by-‎emergent-gravity. Retrieved on November 1, 2018. ‎

‎[14] ‎ Erik Verlinde, (2016), "Emergent Gravity and the ‎Dark Universe", https://arxiv.org/pdf/1611.02269v2. ‎

‎[15] ‎ Eliano Pessa (2009), "The concept of particle in ‎Quantum Field theory", ‎https://arxiv.org/pdf/0907.0178v1. ‎

‎[16] ‎ ‎"Lecture 1: Introduction to QFT and Second ‎Quantization", ‎https://rdmc.nottingham.ac.uk/bitstream/handle/internal/102/Quantum%20Field%20Theory/output1.pdf, Retrieved on Oct. 27, 2019.‎

‎[17] ‎ P.J.H. Denteneer, 2008. "Second Quantization. ‎Lecture notes with course Quantum Theory", ‎http://wwwhome.lorentz.leidenuniv.nl/-‎pjhdent/SecQuant08.pdf, Retrieved on Oct. 27, ‎‎2019. ‎

‎[18] ‎ Ted Jacobson, (1995), "Thermodynamics of ‎Spacetime: The Einstein Equation of State", ‎https://arxiv.org/pdf/gr-qc/9504004v2. ‎

‎[19] ‎ de Haro, Sebastian; Dieks, Dennis; 't Hooft, Gerard; ‎Verlinde, Erik (2013). "Forty Years of String Theory ‎Reflecting on the Foundations". Foundations of ‎Physics. 43 (1): 1-7. ‎

‎[20] ‎ Greene, Brian (2000). "The Elegant Universe: ‎Superstrings, Hidden Dimensions, and the Quest for ‎the Ultimate Theory". Random House. ISBN 978-0-‎‎9650888-0-0 ‎

‎[21] ‎ ‎"Quantum Gravity", Wikipedia, ‎https://en.wikipedia.org/wiki/Quantum_gravity. ‎Retrieved March 2, 2019. ‎

‎[22] ‎ R. Loll (2019), "Quantum Gravity from Causal ‎Dynamical Triangulations: A Review", ‎https://arxiv.org/pdf/1905.08669v1. ‎

‎[23] ‎ H. W. Hamber, 2009, "Quantum Gravitation. The ‎Feynman Path Integral Approach", Springer. ‎

‎[24] ‎ Hrvoje Nikoli, (2013). "Relativistic Quantum ‎Mechanics and Quantum Field Theory". ‎https://arxiv.org/pdf/1205.1992v1

‎[25] ‎ Rovelli, Carlo (2004). "Quantum Gravity". ‎Cambridge University Press. ‎

‎[26] ‎ Malament, D.B. (1996). "In defense of dogma: Why ‎there cannot be a relativistic quantum mechanics of ‎‎(localizable) particles". In Clifton, R.K. (Ed.). ‎‎"Perspectives on quantum reality" (pp. 1-10). ‎Kluwer: Dordrecht. ‎

‎[27] ‎ Daniel Cavalcanti Santos, (2008). "Entanglement: ‎from its mathematical description to its ‎experimental observation", PhD Thesis, Universitat ‎de Barcelona, ‎https://www.icfo.eu/images/publications/DT_08_01‎‎.pdf. Retrieved on March 4, 2019. ‎

‎[28] ‎ J. M. Maldacena, "Black Holes and Holography in ‎String Theory". In: B. Duplantier and V. Rivasseau ‎‎(Eds): "Seminaire Poincare", 61-67. (2004). ‎

‎[29] ‎ J.M. Maldacena, "The Large N Limit Of ‎Superconformal Field Theories And Supergravity", ‎Adv. Theor. Math. Phys. 2 (1998) 231. ‎

‎[30] ‎ Muxin Han and Ling Yan Hung. (2017), "Loop ‎quantum gravity, exact holographic mapping, and ‎holographic entanglement entropy". Phys. Rev.d, ‎‎95(2), 2017. ‎

‎[31] ‎ Y. Jack Ng, (2016), "Holographic Theory of Gravity ‎and Cosmology", ‎https://arxiv.org/pdf/1610.06236v1. ‎

‎[32] ‎ Ted Jacobson and Renaud Parentani (2003), ‎‎"Horizon Entropy", https://arxiv.org/pdf/gr-‎qc/0302099v1. ‎

‎[33] ‎ Ted Jacobson, (1999), "On the Nature of Black Hole ‎Entropy", https://arxiv.org/pdf/gr-qc/9908031v2. ‎

‎[34] ‎ T.Padmanabhan, (2010), "Thermodynamical Aspects ‎of Gravity: New insights", ‎https://arxiv.org/pdf/0911.5004v2. ‎

‎[35] ‎ ‎"Summary of the Standard Model", ‎http://bolvan.ph.utexas.edu/-‎vadim/Classes/11f/SM.pdf. Retrieved March 2, ‎‎2019. ‎

‎[36] ‎ Wikipedia, "Mathematical formulation of the ‎Standard Model", ‎https://en.wikipedia.org/wiki/Mathematica_formulation_of_the_Standard_Model. Retrieved March 2, ‎‎2019. ‎

‎[37] ‎ ‎"Standard Model", Wikipedia, ‎https://en.wikipedia.org/wiki/Standard_Model. ‎Retrieved March 2, 2019. ‎

‎[38] ‎ A. Hebecker and J. Hisano (2016). "Grand Unified ‎Theories, Revised", Chapter 16, ‎http://wwwpdg.lbl.gov/2016/reviews/rpp2016-rev-‎guts.pdf. Retrieved March 2, 2019. ‎

‎[39] ‎ Haber, Howie. (2015), "Supersymmetry, Part I ‎‎(Theory)",http://pdg.lbl.gov/2015/reviews/rpp2015-‎rev-susy-1-theory.pdf. Retrieved 8 March 2019. ‎

‎[40] ‎ ‎"Theory of everything", ‎https://en.wikipedia.org/wiki/Theory_of_everythin‎g. Retrieved March 2, 2019. ‎

‎[41] ‎ Rovelli, C. (2001). "Notes for a brief history of ‎quantum gravity", https://arxiv.org/pdf/gr-‎qc/0006061v3. ‎

‎[42] ‎ Maldacena, Juan (2005). "The Illusion of Gravity". ‎Scientific American. 293 (5): 56-63. ‎

‎[43] ‎ Weinberg, S., Israel, W. (Ed.). (1979). "Ultraviolet ‎divergences in quantum theories of gravitation". ‎United Kingdom: University Press. ‎

‎[44] ‎ Assaf Shomer (2007). "A pedagogical explanation ‎for the non-renormalizability of gravity", ‎https://arxiv.org/pdf/0709.3555v2. ‎

‎[45] ‎ Anselmi, Damiano (2017). "On the quantum field ‎theory of the gravitational interactions", Journal of ‎High Energy Physics, Vol 2017, 6, pp. 86. ‎

‎[46] ‎ Richard P. Feynman, Albert R. Hibbs, Daniel F. ‎Styer, (2010). "Quantum Mechanics and Path ‎Integrals". Mineola, NY: Dover Publications. ‎

‎[47] ‎ Malham, Simon. (2015). "An introduction to ‎Lagrangian and Hamiltonian mechanics". ‎‎10.13140/RG.2.1.2914.8003.‎

‎[48] ‎ Hans Stephani (2004). "Relativity 3ed: An ‎Introduction to Special and General Relativity 3rd ‎Edition", Cambridge University Press; 3rd. edition. ‎

‎[49] ‎ Leonard Susskind, (2017). "Dear Qubitzers, ‎GR=QM", https://arxiv.org/pdf/1708.03040. ‎

‎[50] ‎ Susskind, Leonard (2016). "Copenhagen vs Everett, ‎Teleportation, and ER=EPR", Fortschritte der ‎Physik, 64 (6-7): 551-564. ‎https://arxiv.org/pdf/1604.02589. ‎

‎[51] ‎ Richard MacKenzie (2000). "Path Integral Methods ‎and Applications", https://arxiv.org/pdf/quant-‎ph/0004090. ‎

‎[52] ‎ P.A.M. Dirac, (1933). "The Lagrangian in Quantum ‎Mechanics", Physikalische Zeitschrift der ‎Sowjetunion, Band 3, Heft 1. ‎

‎[53] ‎ R.P. Feynman, "Space-Time Approach to Non-‎Relativistic Quantum Mechanics", Reviews of ‎Modern Physics 20, 367 1948. ‎

‎[54] ‎ ‎"Chapter 9 - General Relativity: The Field Theory ‎Approach", ‎https://javierrubioblog.files.wordpress.com/2015/12‎‎/chapter9.pdf. Retrieved Feb. 16, 2019. ‎

‎[55] ‎ Pierre Gosselin, Janos Polonyi, (1998). "Path ‎Integral for Relativistic Equations of Motion", ‎Annals of Physics, Volume 268, Issue 2, 20 ‎September 1998, Pages 207-224. ‎

‎[56] ‎ Ian Redmount, Wai-Mo Suen, Kenneth Young ‎‎(1999). "Ambiguities in Quantizing a Classical ‎System", https://arxiv.org/pdf/gr-qc/9904042v1. ‎

‎[57] ‎ K S Mallesh, S Chaturvedi, V Balakrishnan, R ‎Simon and N Mukunda. (2011). "Symmetries and ‎conservation laws in classical and quantum ‎mechanics", Resonance, March 2011, Volume 16, ‎Issue 3, pp 254-273. ‎

‎[58] ‎ Hagen Kleinert, "Functional-Integral Representation ‎of Quantum Field Theory", http://users.physik.fu-‎berlin.de/-kleinert/b6/psfiles/Chapter-13-‎functint.pdf . Retrieved dec 12, 2019. ‎

‎[59] ‎ Karen Crowther and Niels Linnemann, (2017), ‎‎"Renormalizability, fundamentality and a final ‎theory: The role of UV-completion in the search for ‎quantum gravity", ‎https://arxiv.org/pdf/1705.06777v2. ‎

‎[60] ‎ Marc H. Goroff and Augusto Sagnotti, (1986), "The ‎Ultraviolet Behavior of Einstein Gravity", Nuclear ‎Physics B266 (1986) 709-736. ‎

‎[61] ‎ Cumrun Vafa, (2005), "The String Landscape and ‎the Swampland", https://arxiv.org/pdf/hep-‎th/0509212v2

‎[62] ‎ The Reference Frame, (2017), "Competent formal ‎theorists know they can't rely on the existence of the ‎Lagrangian", ‎https://motls.blogspot.com/2017/11/competent-‎formal-theorists-know-they.html. Retrieved ‎December 18, 2019. ‎

‎[63] ‎ Yuji Tachikawa, "What is Quantum Field Theory?", ‎Kavli IPMU 10th anniversary symposium 16 - 18 ‎October 2017. ‎

‎[64] ‎ ‎"Principle of Least Action", ‎http://www.damtp.cam.ac.uk/user/db275/LeastAction.pdf. Retrieved March 2, 2019. ‎

‎[65] ‎ Jaffe, Arthur, (2000). "Constructive Quantum Field ‎Theory". Review article from Mathematical Physics. ‎

‎[66] ‎ Baez, John C., Segal, I.E. and Zhou, Z., ‎‎"Introduction to Algebraic and Constructive ‎Quantum Field Theory", Princeton U. Press, 1992 ‎

‎[67] ‎ Sourav Chatterjee, (2018), "Yang-Mills for ‎probabilists", https://arxiv.org/pdf/1803.01950v1

‎[68] ‎ Gerald V. Dunne, Mithat Unsal, (2016). "New ‎Methods in QFT and QCD: From Large-N Orbifold ‎Equivalence to Bions and Resurgence", ‎https://arxiv.org/pdf/1601.03414. ‎

‎[69] ‎ James Glimm and Arthur Jaffe (2012). "Quantum ‎physics: a functional integral point of view", ‎Springer ‎

‎[70] ‎ Stephen J. Summers, (2016). "A Perspective on ‎Constructive Quantum Field Theory", ‎https://arxiv.org/pdf/1203.3991v2

‎[71] ‎ P. H. Eberhard and R. R. Ross (1989). "Quantum ‎Field Theory Cannot Provide Faster-Than-Light ‎Communication", Foundations of Physics Letters, ‎Vol. 2, No. 2, 1989 ‎

‎[72] ‎ Dick R. (2012), "Klein-Gordon and Dirac Fields. In: ‎Advanced Quantum Mechanics". Graduate Texts in ‎Physics. Springer, New York, NY ‎

‎[73] ‎ Scott Watson, (2001). "Relativistic Path Integrals ‎and the Klein-Gordon Equation", ‎http://www.het.brown.edu/people/watson/papers/rel‎_path_int.ps. Retrieved Feb. 23, 2019. ‎

‎[74] ‎ Ian H. Redmount, Wai-Mo Suen (1992). "Path ‎integration in relativistic quantum mechanics", ‎https://arxiv.org/pdf/grqc/9210019v1.‎

‎[75] ‎ Guangqing Bi, Yuekai Bi (2010). "Stationary ‎Solutions of the Klein-Gordon Equation in a ‎Potential Field", https://arxiv.org/pdf/1008.4224v4. ‎

‎[76] ‎ ‎"The Klein-Gordon field and its variational ‎principle", ‎http://www.physics.usu.edu/torre/Classical_Field_Theory/Lectures/ 02_KG.pdf. Retrieved Feb. 24, ‎‎2019. ‎

‎[77] ‎ Hagen Kleinert, (2004). "Path Integrals in Quantum ‎Mechanics, Statistics, Polymer Physics, and ‎Financial Markets", World Scientific, ISBN 978-‎‎981-4365-26-0. ‎

‎[78] ‎ Frank Antonsen and Karsten Bormann, (1996). ‎‎"Propagators in Curved Space", ‎https://arxiv.org/pdf/hep-th/9608141v1

‎[79] ‎ T. S. Bunch and Leonard Parker, (1979). "Feynman ‎propagator in curved spacetime: A momentum-‎space representation", Physical Review volume 20, ‎Number 10, 15 November 1979. ‎

‎[80] ‎ Mayeul Arminjon, (2015). "On the Hamiltonian and ‎energy operators in a curved spacetime, especially ‎for a Dirac particle", J. Phys.: Conf. Ser. 626 012030 ‎

‎[81] ‎ ‎"Distribution (mathematics)", Wikipedia, ‎https://en.wikipedia.org/wiki/Distribution_(mathematics). Retrieved on Feb 23, 2019. ‎

‎[82] ‎ Sergio Albeverio and Sonia Mazzucchi (2011), ‎‎"Path Integral: mathematical aspects", Scholarpedia, ‎‎6(1):8832, ‎http://www.scholarpedia.org/article/Path_integral:_‎mathematical_aspects. Retrieved on Feb 23, 2019. ‎

‎[83] ‎ Carlo Rovelli and Francesca Vidotto, (2014), ‎‎"Covariant Loop Quantum Gravity: An elementary ‎introduction to Quantum Gravity and Spinfoam ‎Theory", Cambridge University Press. ‎

‎[84]‎ ‎ Jean Zinn-Justin (2009), "Path Integral", ‎Scholarpedia, 4(2):8674. ‎

‎[85] ‎ Michael Taylor. "Functional Analysis course", ‎http://mtaylor.web.unc.edu/notes/functional-‎analysis-course/. Retrieved on Feb. 23, 2019. ‎

‎[86] ‎ Maldacena, Juan and Susskind, Leonard (2013). ‎‎"Cool horizons for entangled black holes", Fortsch. ‎Phys. 61 (9): 781-811. ‎https://arxiv.org/pdf/1306.0533. ‎

‎[87] ‎ Ning Bao and Jason Pollack and Grant N. Remmen, ‎‎(2015), "Wormhole and entanglement (non-‎‎)detection in the ER=EPR correspondence", ‎https://arxiv.org/pdf/1509.05426. ‎

‎[88] ‎ Salwa Alsaleh, Lina Alasfar, (2016), "ER= EPR and ‎Non-Perturbative Action Integrals for Quantum ‎Gravity", https://arxiv.org/pdf/1611.02573. ‎

‎[89] ‎ Einstein, A. and Rosen, N. (1935). "The particle ‎problem in the general theory of relativity". ‎Physical Review, 48(1):73. ‎

‎[90] ‎ Eduardo Guendelman, Emil Nissimov, Svetlana ‎Pacheva, Michail Stoilov, (2016),"Einstein-Rosen ‎‎"Bridge" Revisited and Lightlike Thin-Shell ‎Wormholes", https://arxiv.org/pdf/1611.04336v2

‎[91] ‎ Ning Bao, Aidan Chatwin-Davies, Jason Pollack, ‎Grant N. Remmen, (2018), "Traversable Wormholes ‎as Quantum Channels: Exploring CFT ‎Entanglement Structure and Channel Capacity in ‎Holography", https://arxiv.org/pdf/1808.05963v2. ‎

‎[92] ‎ Mathieu Baillif, Alexandre Gabard (2008), ‎‎"Manifolds: Hausdorffness versus homogeneity", ‎Proceedings of the American Mathematical Society, ‎‎2008, vol. 136, no. 3, p. 1105-1111. ‎

‎[93] Mark Sharlow, (2007). "The quantum mechanical Path ‎Integral: Toward a realistic interpretation", ‎https://core.ac.uk/download/pdf/11921794.pdf. ‎Retrieved on March 3, 2019. ‎

‎[94] ‎ Georges Obied, Hirosi Ooguri, Lev Spodyneiko, ‎Cumrun Vafa, (2018), "De Sitter Space and the ‎Swampland", https://arxiv.org/pdf/1806.08362v3. ‎

‎[95] ‎ Laszlo E. Szabo, (2007), "The Einstein-Podolsky-‎Rosen Argument and the Bell Inequalities", ‎https://arxiv.org/pdf/0712.1318v1. ‎

‎[96] ‎ Fiorenzo Bastianelli and Peter van Nieuwenhuizen, ‎‎(2006). "Path Integrals and Anomalies in Curved ‎Space", Cambridge University Press. ‎

‎[97] ‎ J.A. Shi ett, (2015), "Standard Model Lagrangian ‎‎(including neutrino mass terms)", http://einstein-‎schrodinger.com/Standard_Model.pdf, Retrieved ‎December20, 2019. ‎

‎[98] ‎ Y. Aharonov, H. Pendleton, A. Peterson, (1970), ‎‎"Deterministic Quantum Interference Experiments", ‎Int. J. Th. Phys. 3, 443. ‎

‎[99] ‎ Steven Weinstein, (2008). "Nonlocality without ‎nonlocality", https://arxiv.org/pdf/0812.0349v2. ‎

‎[100] ‎ Mojtaba Ghadimi, Michael J. W. Hall and Howard ‎M. Wiseman, (2018), "Nonlocality in Bell's ‎Theorem, in Bohm's Theory, and in Many ‎InteractingWorlds Theorising", ‎https://arxiv.org/pdf/1807.01568v2. ‎

‎[101] ‎ D. Bohm, (1952), "A Suggested Interpretation of the ‎Quantum Theory in Terms of 'Hidden Variables' I", ‎Phys. Rev. 85 (1952) 166. ‎

‎[102] ‎ D. Bohm, (1952), "A Suggested Interpretation of the ‎Quantum Theory in Terms of 'Hidden Variables' II", ‎Phys. Rev. 85 (1952) 180. ‎

‎[103] ‎ Castro Carlos Perelman, (2018), "Bohm's Potential, ‎Classical/Quantum Duality and Repulsive Gravity", ‎‎10.13140/RG.2.2.20005.76006. ‎

‎[104] ‎ HUGH EVERETT (1973), "The Many- Worlds ‎Interpretation of Quantum Mechanics", Princeton ‎University Press ‎

‎[105] ‎ Frank J. Tipler, (2014). "Quantum nonlocality does ‎not exist". Proceedings of the National Academy of ‎Sciences, 2014. ‎

‎[106] ‎ Fine, Arthur, "The Einstein-Podolsky-Rosen ‎Argument in Quantum Theory", The Stanford ‎Encyclopedia of Philosophy (Winter 2017 Edition), ‎Edward N. Zalta (ed.), URL = ‎https://plato.stanford.edu/archives/win2017/entries/‎qt-epr/. Retrieved on March 4. 2019. ‎

‎[107] ‎ Bohr, N., (1935), "Can quantum-mechanical ‎description of physical reality be considered ‎complete?", Physical Review, 48: 696-702. ‎

‎[108] ‎ Sukanya Sinha and Rafael D. Sorkin, (1991), "A ‎Sum-Over-Histories Account of an EPR(B) ‎Experiment", Found. Phys. Letter, 4:303. ‎

‎[109] ‎ C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. ‎Peres, and W. Wootters, (1993). "Teleporting an ‎Unknown Quantum State via Dual Classical and ‎EPR Channels", Phys. Rev. Lett. vol. 70, pp 1895-‎‎1899, 1993. ‎

‎[110] ‎ D. Bouwmeester et al., (1997), "Experimental ‎quantum teleportation", Nature 390, 575-9 (1997). ‎

‎[111] ‎ Fiorenzo Bastianelli, Olindo Corradini, (2017). "On ‎the simplified Path Integral on spheres", ‎https://arxiv.org/pdf/1708.03557v2. ‎

‎[112] ‎ Reartes, Walter. (2004). "Path Integral Quantization ‎of the Sphere", 10.1007/978-1-4419-9058-7_14. ‎

‎[113] ‎ Christian Grosche and Frank Steiner (1995). "How ‎to solve Path Integrals in quantum mechanics", ‎Journal of Mathematical Physics 36, 2354 (1995). ‎

‎[114] ‎ J. A. Wheeler and R. P. Feynman, (1945), ‎‎"Interaction with the absorber as the mechanism of ‎radiation", Rev. Mod. Phys. 17, 157 (1945). ‎

‎[115] ‎ Dong Yang, (2006), "A simple proof of monogamy ‎of entanglement", https://arxiv.org/pdf/quant-‎ph/0604168v2. ‎

‎[116] ‎ IBM Research, "Quantum Teleportation", ‎https://researcher.watson.ibm.com/researcher/view_‎group.php?id=2862. Retrieved March 7, 2019. ‎

‎[117] ‎ D. N. Matsukevich, P. Maunz, D. L. Moehring, S. ‎Olmschenk, and C. Monroe, (2008). "Bell inequality ‎violation with two remote atomic qubits", ‎https://arxiv.org/pdf/0801.2184v1. ‎

‎[118] ‎ S. Olmschenk, D. N. Matsukevich, P. Maunz, D. ‎Hayes, L.-M. Duan, C. Monroe1, (2009). "Quantum ‎Teleportation Between Distant Matter Qubits", ‎https://arxiv.org/pdf/0907.5240v1. ‎

‎[119] ‎ Elise Crull, (2018), "You thought quantum ‎mechanics was weird: check out entangled time", ‎https://aeon.co/ideas/you-thought-quantum-‎mechanics-was-weird-check-out-entangled-time. ‎Retrieved on March 10, 2019. ‎

‎[120] ‎ Christoph Simon, (2002), "Natural entanglement in ‎Bose-Einstein condensates", Phys. Rev. A 66, ‎‎052323, Published 25 November 2002. ‎

‎[121] ‎ D. Klauber, (2010), "Derivation of the Feynman ‎Propagator", Student Guide to Quantum Field ‎Theory, Chapter 3, Sandtrove Press. ‎

‎[122] ‎ Jan Louis, "Quantum Field Theory I", ‎http://www.desy.de/-‎jlouis/Vorlesungen/QFTI10/QFTI.pdf. Retrieved Jan ‎‎20, 2019. ‎

‎[123] ‎ L. S. Schulman (2005), "Techniques and ‎Applications of Path Integration", Dover ‎Publications (December 27, 2005). ‎

‎[124] ‎ ‎"Propagator", Wikipedia, ‎https://en.wikipedia.org/wiki/Propagator. Retrieved ‎on February 20, 2019. ‎

‎[125] ‎ Michael E. Peskin and Daniel V. Schroeder. "An ‎Introduction To Quantum Field Theory, Student ‎Economy Edition (Frontiers in Physics)", CRC ‎Press; 1 edition (November 3, 2015). ‎

‎[126] ‎ J.D. Franson, (2008). "Generation of Entanglement ‎Outside of the Light Cone", Journal of Modern ‎Optics 55, 2117-2140. ‎

‎[127] ‎ David Tong, "Quantum Field Theory", ‎http://www.damtp.cam.ac.uk/user/tong/qft.html. ‎Retrieved on February 24, 2019.‎

‎[128] ‎ Matthias Sonnleitner, Nils Trautmann, and Stephen ‎M. Barnett, "Will a Decaying Atom Feel a Friction ‎Force?", Phys. Rev. Lett. 118, 053601 - Published 3 ‎February 2017. ‎

‎[129] ‎ M. Bordag, U. Mohideen, V.M. Mostepanenko, ‎‎"New developments in the Casimir effect", Phys. ‎Rep. 353, 1-205, 2001. ‎

‎[130] Mark D. Roberts, (2001), "Vacuum Energy", ‎https://arxiv.org/pdf/hep-th/0012062v3. ‎

‎[131] Matthew D. Schwartz (2014), "Quantum Field Theory ‎and the Standard Model", Cambridge University ‎Press, 2014. ‎

‎[132] Reeh, H., Schlieder, S. (1961). "Bemerkungen zur ‎Unitareiquivalenz von Lorentz invarianten ‎Feldern". Nuovo Cimento, 22, 1051. ‎

‎[133] ‎ Hegerfeldt, G.C. (1998), "Causality, particle ‎localization and positivity of the energy", In Bohm, ‎A., Doebner, H.-D., Kielanowski, P. (Eds.). ‎‎"Irreversibility and causality: Semigroups and ‎rigged Hilbert spaces", (pp. 238-245). Springer, New ‎York. ‎

‎[134] ‎ Hegerfeldt, G.C. (1998). "Instantaneous spreading ‎and Einstein causality in quantum theory", Annalen ‎der Physik, 7, 716. ‎

‎[135] Ugo Moschella, (2005). "The de Sitter and anti-de ‎Sitter Sightseeing Tour", Seminaire Poincare 1 ‎‎(2005) 1 - 12. ‎http://www.bourbaphy.fr/moschella.pdf. Retrieved ‎on February 17, 2019. ‎

‎[136] A. Einstein, "Kosmologische Betrachtungen zur ‎allgemeinen Relativittstheorie", Sitzungsber. Preuss ‎‎. Akad. Wiss., Berlin, 142 (1917). ‎

‎[137] J. M. Maldacena, "Black Holes and Holography in ‎String Theory". In: B. Duplantier and V. Rivasseau ‎‎(Eds): "Seminaire Poincare", 61-67. (2004). ‎

‎[138] J. M. Maldacena, (1998), "The Large N Limit Of ‎Superconformal Field Theories And Supergravity", ‎Adv. Theor. Math. Phys. 2 (1998) 231. ‎

‎[139] "String theory", Wikipedia, ‎https://en.wikipedia.org/wiki/String_theory. ‎Retrieved on March 12, 2019. ‎

‎[140] Maldacena, Juan (2005). "The Illusion of Gravity". ‎Scientific American., 293 (5): 56-63. ‎

‎[141] Jan Zaanen, Yan Liu, Ya Sun K.Schalm; 2015, ‎‎"Holographic Duality in Condensed Matter ‎Physics", Cambridge University Press, Cambridge. ‎

‎[142] Elli Pomoni, (2010). "AdS/CFT beyond the N = 4 ‎SYM paradigm", PhD thesis, Stony Brook ‎University. ‎

‎[143] van Raamsdonk, Mark (2010). "Building up ‎spacetime with quantum entanglement", Gen. Rel. ‎Grav. 42 (14): 2323-2329. ‎https://arxiv.org/pdf/1005.3035. ‎

‎[144] P. N. Kaloyerou, (1995). "Causal Interpretation of the ‎Modified Klein-Gordon Equation", Foundations of ‎Physics. Vol. 25, No. 10. 1995. ‎

‎[145] A. Einstein (1925). "Quantentheorie des einatomigen ‎idealen Gases". Sitzungsberichte der Preussischen ‎Akademie der Wissenschaften 1: 3. ‎

‎[146] Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. (April ‎‎1957). "Microscopic Theory of Superconductivity". ‎Physical Review. 106 (1): 162-164. ‎

‎[147] V. L. Ginzburg & L.D. Landau (1950). "On the theory ‎of superconductivity". Zhurnal Eksperimental noi i ‎Teoreticheskoi Fiziki. / JETP 20: 1064. ‎

‎[148] Qijin Chen, Jelena Stajic, Shina Tan, K. Levin, ‎‎(2004), "BCS-BEC crossover: From high ‎temperature superconductors to ultracold ‎superfluids", https://arxiv.org/pdf/cond-‎mat/0404274v3. ‎

‎[149] Sachdev S, (2013), "Strange and stringy", Sci Am., ‎‎2013 Jan, 308(1):44-51. ‎

‎[150] Itai Panas, (2012), "Superatom Representation of ‎High-TC Superconductivity", Physica C: ‎Superconductivity Volume 480, October 2012, ‎Pages 137-143. ‎

‎[151] J. Zaanen and al. (2006), "Towards a complete theory ‎of high T-c", Nature Physics volume 2, pages 138-‎‎143. ‎

‎[152] M. Ulmke, V. Janis, D. Vollhardt (1994). "Anderson-‎Hubbard Model in d=∞", https://arxiv.org/pdf/cond-‎mat/9411034v1. ‎

‎[153] Tobias Wenger, (2012), "Holographic ‎Superconductivity Effective Field Theoretic ‎Approach to Layered Superconductors", MS Thesis, ‎Chalmers University of Technology Gothenburg, ‎Sweden. ‎

‎[154] Rong-Gen Cai, Li Li, Li-Fang Li, Run-Qiu Yang. ‎‎(2015), "Introduction to holographic ‎superconductor models", ‎https://arxiv.org/pdf/1502.00437v3.‎

‎[155] Mohit Randeria and Edward Taylor, (2014). "BCS-‎BEC Crossover and the Unitary Fermi Gas", ‎https://arxiv.org/pdf/1306.5785v3. ‎

‎[156] Clovis Jacinto de Matos, Martin Tajmar (2006). ‎‎"Gravitomagnetic London Moment and the ‎Graviton Mass inside a Superconductor", ‎https://arxiv.org/pdf/cond-mat/0602591. ‎

‎[157] Ryder, L.H.(1996), "Quantum Field Theory", ‎Cambridge University Press, 2nd Edition, 1996 ‎

‎[158] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. ‎Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, ‎‎"Unconventional superconductivity in magic-angle ‎graphene superlattices", Nature 556, 43 (2018). ‎

‎[159] Maddury Somayazulu, Muhtar Ahart, Ajay K Mishra, ‎Zachary M. Geballe, Maria Baldini, Yue Meng, ‎Viktor V. Struzhkin, Russell J. Hemley. (2018). ‎‎"Evidence for superconductivity above 260 K in ‎lanthanum superhydride at megabar pressures", ‎https://arxiv.org/pdf/1808.07695v3. ‎

‎[160] A. P. Drozdov, V. S. Minkov, S. P. Besedin, P. P. Kong, ‎M. A. Kuzovnikov, D. A. Knyazev, M. I. Eremets ‎‎(2018). "Superconductivity at 215 K in lanthanum ‎hydride at high pressures". ‎https://arxiv.org/pdf/1808.07039v1. ‎

‎[161] Bogdan Opanchuk, Rodney Polkinghorne, Oleksandr ‎Fialko, Joachim Brand, Peter D.Drummond (2013). ‎‎"Quantum simulations of the early universe", ‎https://arxiv.org/pdf/1305.5314v2. ‎

‎[162] Jean-Paul Blaizot, Bin Wu, and Li Yan (2014), ‎‎"Quark production, Bose-Einstein condensates and ‎thermalization of the quark-gluon plasma", ‎Nucl.Phys. A930 (2014) 139-162. ‎

‎[163] ALICE Collaboration, (2018), "Anisotropic flow in ‎xe-xe collisions at sqrtsNN =5.44 TeV", ‎https://arxiv.org/pdf/1805.01832v2. ‎

‎[164] ‎ ‎"Quark-gluon plasma", Wikipedia, ‎https://en.wikipedia.org/wiki/Quark%E2%80%93gluon_plasma. Retrieved April 6, 2019. ‎

‎[165] ‎ A D Linde, (1984). "The inflationary universe", Rep. ‎Prog. Phys., Vol 47, pp 925-986, 1984. ‎

‎[166] ‎ A. Guth, (2018), "The New Inflationary Universe", ‎MIT Course, Physics 8.286: The Early Universe. ‎

‎[167] ‎ ‎"Chronology of the universe", ‎https://en.wikipedia.org/wiki/Chronology_of_the_‎universe. Retrieved on April 6. 2019. ‎

‎[168] ‎ ‎"Quantum Computing", Wikipedia, ‎https://en.wikipedia.org/wiki/Quantum_computing. ‎Retrieved April 7, 2019. ‎

‎[169] ‎ Domenico Giulini, (2012), "Equivalence Principle, ‎Quantum Mechanics, and Atom-Interferometric ‎Tests", Quantum Field Theory and Gravity pp 345-‎‎370. Springer, Basel. ‎

‎[170] ‎ E. Kajari, N.L. Harshman, E.M. Rasel, S. Stenholm, ‎G. Süssmann, W.P. Schleich, (2010), "Inertial and ‎gravitational mass in quantum mechanics", ‎https://arxiv.org/pdf/1006.1988v2. ‎

‎[171] ‎ Carroll, S., "Spacetime and Geometry. An ‎Introduction to General Relativity", (Pearson ‎Education Limited, 2014). ‎

‎[172] ‎ Rashmi Shivni, (2016). "The deconstructed ‎Standard Model equation", ‎https://www.symmetrymagazine.org/article/the-‎deconstructed-standard-model-equation. Retrieved ‎on February 24, 2019. ‎

‎[173] ‎ Gernot Eichmann, (2014), "Poincaré group", ‎http://cftp.ist.utl.pt/gernot.eichmann/2014-hadron-‎physics/hadron-app-2.pdf. Retrieved on April 15, ‎‎2019. ‎

‎[174] ‎ Sougato Bose, (2018). "A Spin Entanglement ‎Witness for Quantum Gravity", ‎https://arxiv.org/pdf/1707.06050v1. ‎

‎[175] ‎ C. Marletto and V. Vedral, (2018). "Gravitationally-‎induced entanglement between two massive ‎particles is sufficient evidence of quantum effects in ‎gravity". https://arxiv.org/pdf/1707.06036v2. ‎

‎[176] ‎ C. Anastopoulos and B. L. Hu. (2018). "Comment ‎on "A Spin Entanglement Witness for Quantum ‎Gravity" and on "Gravitationally Induced ‎Entanglement between Two Massive Particles is ‎Sufficient Evidence of Quantum Effects in Gravity" ‎‎". https://arxiv.org/pdf/1804.11315v2. ‎

‎[177] ‎ Moore, Thomas A., (2013), "A General Relativity ‎Workbook", University Science Books. ‎

‎[178] ‎ Mordehai Milgrom, (2014), "The MOND paradigm ‎of modified dynamics", Scholarpedia, 9(6):31410. ‎

‎[179] Tower Wang, (2012), "Modified entropic gravity ‎revisited", https://arxiv.org/pdf/1211.5722v1. ‎

‎[180] ‎ Zhi-Wei Wang and Samuel L. Braunstein., (2018), ‎‎"Surfaces away from horizons are not ‎thermodynamic", Nature Communications 9, Article ‎number: 2977 (2018). ‎

‎[181] ‎ Pardo, Kris (2017-06-02). "Testing Emergent ‎Gravity with Isolated Dwarf Galaxies" (Report). ‎https://arxiv.org/pdf/1706.00785. ‎

‎[182] ‎ Wikipedia, "Divergence theorem", ‎https://en.wikipedia.org/wiki/Divergence_theorem. ‎Retrieved December 27, 2019.‎

‎[183] ‎ Wikipedia, "Gauss's law for gravity", ‎https://en.wikipedia.org/wiki/Gauss%27s_law_for_‎gravity. Retrieved December 27, 2019. ‎

‎[184] ‎ Charles W. Misner and John A. Wheelers, (1957), ‎‎"Classical Physics as Geometry. Gravitation, ‎Electromagnetism, Unquantized Charge, and Mass ‎as Properties of Curved Empty Space", Annals Of ‎Physics, 2, 525-603. ‎

‎[185] ‎ Luca Bombelli, Rafael Sorkin, Joohan Lee, (1986), ‎‎"Quantum source of entropy for black holes", ‎Physical Review D, 1986. ‎

‎[186] ‎ Saurya Das, S. Shankaranarayanan, (2007), ‎‎"Entanglement as a source of black hole entropy", ‎https://arxiv.org/pdf/gr-qc/0610022v2. ‎

‎[187] ‎ Christopher Eling, Raf Guedens, Ted Jacobson, ‎‎(2006), "Non-equilibrium Thermodynamics of ‎Spacetime", https://arxiv.org/pdf/gr-qc/0602001v1. ‎

‎[188] ‎ Kristan Jensen, Andreas Karch (2013), "The ‎holographic dual of an EPR pair has a wormhole", ‎https://arxiv.org/pdf/1307.1132. ‎

‎[189] ‎ Padmanabhan, T., (2008), "Gravity: The inside ‎story". Gen.Rel.Grav. 40 (2008) 2031-2036, ‎Int.J.Mod.Phys. D17 (2009) 2585-2591. ‎

‎[190] ‎ ChunJun Cao, Sean M. Carroll, Spyridon ‎Michalakis, (2016). "Space from Hilbert Space: ‎Recovering Geometry from Bulk Entanglement", ‎https://arxiv.org/pdf/1606.08444v3. ‎

‎[191] ‎ J. Makela, (2009), "A Simple Quantum-Mechanical ‎Model of Spacetime I: Microscopic Properties of ‎Spacetime", https://arxiv.org/pdf/0805.3952v3. ‎

‎[192] ‎ J. Makela, (2009) "A Simple Quantum-Mechanical ‎Model of Spacetime II: Thermodynamics of ‎Spacetime", https://arxiv.org/pdf/ 0805.3955v3. ‎

‎[193] ‎ J. Makela (2008), "Partition Function of Spacetime", ‎https://arxiv.org/pdf/0810.4910v1. ‎

‎[194] ‎ Jarmo Makela (2010), "Notes Concerning "On the ‎Origin of Gravity and the Laws of Newton" by E. ‎Verlinde (https://arxiv.org/pdf/1001.0785)", ‎https://arxiv.org/pdf/1001.3808v3. ‎

‎[195] ‎ Viqar Husain, R. B. Mann, (2008), ‎‎"Thermodynamics and phases in quantum gravity", ‎https://arxiv.org/pdf/0812.0399v2. ‎

‎[196] ‎ Magdalena Zych, Fabio Costa, Igor Pikovski and ‎Caslav Brukner, (2019), "Bell's theorem for temporal ‎order", Nature Communications volume 10, Article ‎number: 3772. ‎

‎[197] ‎ Lee Smolin, (2015). "Quantum mechanics and the ‎principle of maximal variety". ‎https://arxiv.org/pdf/1506.02938v1. ‎

‎[198] ‎ Lee Smolin, (2019). "A casual theory of views". ‎https://arxiv.org/pdf/1712.04799v2. ‎

‎[199] ‎ Lee Smolin, (2011). "A real ensemble interpretation ‎of quantum mechanics", ‎https://arxiv.org/pdf/1104.2822v1. ‎

‎[200] ‎ xiao Dong, Ling Zhou, (2018). "Spacetime as the ‎optimal generative network of quantum states: a ‎roadmap to QM=GR?", ‎https://arxiv.org/pdf/1804.07908v1. ‎

‎[201] ‎ G. Evenbly and G. Vidal. (2011). "Tensor network ‎states and geometry". Journal of Statistical Physics, ‎‎145(4):891-918, 2011. ‎

‎[202] ‎ Roger Penrose, (1972), "On the nature of quantum ‎geometry", in "Magic Without Magic", ed. J. ‎Klauder, Freeman, San Francisco. ‎

‎[203] ‎ Fotini Markopoulou, Lee Smolin (2004). "Quantum ‎Theory from Quantum Gravity". ‎https://arxiv.org/pdf/gr-qc/0311059v2. ‎

‎[204] ‎ E. Nelson, "Derivation of the Schrodinger equation ‎from Newtonian mechanics", Phy. Rev., 150, 1079 ‎‎(1969); "Quantum Fluctuations", Princeton Series in ‎Physics, Princeton University Press (1985). ‎

‎[205] ‎ Hermann Nicolai and Kasper Peeters, (2006). "Loop ‎and Spin Foam Quantum Gravity: A Brief Guide for ‎Beginners", https://arxiv.org/pdf/hep-th/0601129v2. ‎

‎[206] ‎ Hou Y. Yau, (2007 & 2016), "Quantum Theory from ‎a Space-Time Wave", ‎https://arxiv.org/pdf/0706.0190 v2 and v4. ‎

‎[207] ‎ Ekert A., Jozsa R., Penrose R., and Penrose Roger ‎‎(1999). "Quantum computation, entanglement and ‎state reduction". 356 Philosophical Transactions of ‎the Royal Society of London. Series A: ‎Mathematical, Physical and Engineering Sciences. ‎

‎[208] ‎ Tejinder P. Singh, (2018). "Space and Time as a ‎Consequence of GRW Quantum Jumps". ‎https://arxiv.org/pdf/1806.01297v4. ‎

‎[209] ‎ Tejinder P. Singh, (2018). "Space-time from ‎Collapse of the Wave-function", ‎https://arxiv.org/pdf/1809.03441v2. ‎

‎[210] ‎ Wayne C. Myrvold, (2014). "What is a ‎Wavefunction?", http://philsci-‎archive.pitt.edu/10750/. Retrieved on April 22, ‎‎2019. ‎

‎[211] ‎ G N Ord, (1983), "Fractal space-time: a geometric ‎analogue of relativistic quantum mechanics", J. ‎Phys. A: Math. Gen. 16 (1983) 1869-1884. ‎

‎[212] ‎ Laurent Nottale, (2010), "Scale Relativity and ‎Fractal Space-Time: Theory and Applications", ‎Found of Sciences, June 2010, Volume 15, Issue 2, ‎pp 101-152. ‎

‎[213] ‎ Michael R. Douglas, Nikita A. Nekrasov, (2001), ‎‎"Noncommutative Field Theory", ‎https://arxiv.org/pdf/hep-th/0106048v4. ‎

‎[214] ‎ Louise Dolan, Chiara R. Nappi, (2033), "Strings and ‎Noncommutativity", https://arxiv.org/pdf/hep-‎th/0302122v2. ‎

‎[215] ‎ Florian Girelli, Franz Hinterleitner and Seth A. ‎Major, (2012), "Loop Quantum Gravity ‎Phenomenology: Linking Loops to Observational ‎Physics", "Symmetry, Integrability and Geometry: ‎Methods and Applications" SIGMA 8 (2012), 098, ‎‎73 pages. ‎

‎[216] ‎ ‎"Dark Energy", Wikipedia, ‎https://en.wikipedia.org/wiki/Dark_energy. ‎Retrieved on February 27, 2019. ‎

‎[217] ‎ Joel Primack, "Historical Introduction to ΛCDM ‎Cosmology", http://physics.ucsc.edu/-joel/Primack-‎Lect1-LCDM_History.pdf. Retrieved on May 12, ‎‎2019. ‎

‎[218] ‎ Qiaoling Yang, (2012), "Axion BEC: A Model ‎Beyond CDM", PhD Thesis, UNIVERSITY OF ‎FLORIDA. ‎

‎[219] ‎ Svend Erik Rugh, Henrik Zinkernagel, (2000). "The ‎Quantum Vacuum and the Cosmological Constant ‎Problem", https://arxiv.org/pdf/hep-th/0012253v1. ‎

‎[220] ‎ Wm. Robert Johnston, (2008). "Calculations on ‎space-time curvature within the Earth and Sun", ‎http://www.johnstonsarchive.net/relativity/stcurve.‎pdf. Retrieved on May 6, 2019. ‎

‎[221] ‎ J. V. Narlikar, Ganeshkhind, J.-C. Pecker and J.-P. ‎Vigier, (1991), "Some Consequences of a Spatially ‎Varying Cosmological Constant in a Spherically ‎Symmetric Distribution of Matter", J. Astrophys. ‎Astr. 12, 7-16. ‎

‎[222] ‎ Hongya Liu and Paul S. Wesson, (2001). "Universe ‎Models WITH A Variable Cosmological And A Big ‎Bounce", The Astrophysical Journal, 562 : 16, 2001 ‎November 20 ‎

‎[223] ‎ ‎"Dark Matter", Wikipedia, ‎https://en.wikipedia.org/wiki/Dark_matter. ‎Retrieved on February 27, 2019. ‎

‎[224] ‎ M. Tajmar, F. Plesescu, K. Marhold, C.J. de Matos. ‎‎(2006), "Experimental Detection of the ‎Gravitomagnetic London Moment", ‎https://arxiv.org/pdf/gr-qc/0603033v1. ‎

‎[225] ‎ Martin Tajmar, Florin Plesescu, Bernhard Seifert, ‎Klaus Marhold (2006), "Measurement of ‎Gravitomagnetic and Acceleration Fields Around ‎Rotating Superconductors", https://arxiv.org/pdf/gr-‎qc/0610015. ‎

‎[226] ‎ M. Tajmar, F. Plesescu, B. Seifert, R. Schnitzer, I. ‎Vasiljevich, (2008), "Search for Frame-Dragging-‎Like Signals Close to Spinning Superconductors", ‎https://arxiv.org/pdf/0707.3806v9. ‎

‎[227] ‎ R.M. Wald, (1984), "General Relativity", The ‎University of Chicago Press. ‎

‎[228] ‎ Wytler Cordeiro dos Santos, (2016), "Introduction to ‎Einstein-Maxwell equations and the Rainich ‎conditions", https://arxiv.org/pdf/1606.08527v1. ‎

‎[229] ‎ I. C. Jardima, R. R. Landim, (2013), "Deviation of ‎Large Scale Gravitoelectromagnetic Field in Post-‎Newtonian Approximation", ‎https://arxiv.org/pdf/1304.6385v2. ‎

‎[230] ‎ Juan Maldacena, Alexey Milekhin, Fedor Popov, ‎‎(2018). "Traversable wormholes in four dimensions", ‎https://arxiv.org/pdf/1807.04726v2. ‎

‎[231] ‎ Faizuddin Ahmed, Bidyut Bikash Hazarika and ‎Debojit Sarma (2016), "The anti-de Sitter spacetime ‎as a time machine", Eur. Phys. J. Plus (2016) ‎‎131:230. ‎

‎[232] ‎ G. 't Hooft, (1993), "Dimensional Reduction in ‎Quantum Gravity", https://arxiv.org/pdf/gr-‎qc/9310026v2. ‎

‎[233] ‎ Ahmed Almheiri, xi Dong, Daniel Harlow, (2014), ‎‎"Bulk Locality and Quantum Error Correction in ‎AdS/CFT", https://arxiv.org/pdf/1411.7041v3. ‎

‎[234] ‎ Fernando Pastawski, Beni Yoshida, Daniel Harlow, ‎John Preskill, (2015), "Holographic quantum error-‎correcting codes: Toy models for the bulk/boundary ‎correspondence", ‎https://arxiv.org/pdf/1503.06237v2. ‎

‎[235] ‎ Ahmed Almheiri, (2018), "Holographic Quantum ‎Error Correction and the Projected Black Hole ‎Interior", https://arxiv.org/pdf/1810.02055v2. ‎

‎[236] ‎ Sabine Hossenfelder, (2018), "Lost in Math: How ‎Beauty Leads Physics Astray", Basic Books. ‎

‎[237] ‎ Lee Smolin, (2006), "The Trouble with Physics: The ‎Rise of String Theory, The Fall of a Science, and ‎What Comes Next", Mariner Books. ‎

‎[238] ‎ Peter Woit, (2007), "Not Even Wrong: The Failure of ‎String Theory and the Search for Unity in Phyisical ‎Law", Basic Books ‎

‎[239] ‎ Wikipedia, "Proton decay", ‎https://en.wikipedia.org/wiki/Proton_decay. ‎Retrieved, January 3, 2020. ‎

‎[240] ‎ Ethan Siegel and al., (2020), "How Certain Are We ‎That Protons Don't Decay?", ‎https://www.forbes.com/sites/startswithabang/2020/‎‎01/03/how-certain-are-we-that-protons-dont-decay. ‎Retrieved, January 3, 2020. ‎

‎[241] ‎ W. Zhu, Zhoushen Huang, Yin-chen He, (2018), ‎‎"Reconstructing Entanglement Hamiltonian via ‎Entanglement Eigenstates", ‎https://arxiv.org/pdf/1806.08060. ‎

‎[242] ‎ Fabio Maria Mele, (2016), "Quantum Metric and ‎Entanglement on Spin Networks", ‎https://arxiv.org/pdf/1703.06415v1. ‎

‎[243] ‎ Johannes Thueringen, (2015), "Discrete quantum ‎geometries and their effective dimension", Ph.D. ‎Thesis, Humboldt-Universitat zu Berlin ‎

‎[244] ‎ Helge Kragh, (2002), "Quantum Generations: A ‎History of Physics in the Twentieth Century", ‎Princeton University Press; Reprint edition (March ‎‎24, 2002). ‎

‎[245] ‎ K. A. Milton, (2015), "Schwinger's Quantum Action ‎Principle: From Dirac's formulation through ‎Feynman's Path Integrals, the Schwinger-Keldysh ‎method, quantum field theory, to source theory", ‎https://arxiv.org/pdf/1503.08091v1. ‎

‎[246] ‎ A. M. Ozorio de Almeida, (2006), "Entanglement in ‎phase space", https://arxiv.org/pdf/quant-‎ph/0612029v1. ‎

‎[247] ‎ The reference frame, (2012), "Why Feynman's Path ‎Integral doesn't contradict the uncertainty ‎principle", ‎https://motls.blogspot.com/2012/06/why-feynmans-‎path-integral-doesnt.html. Retrieved Dec 15, 2019. ‎

‎[248] ‎ Lee Smolin, (2006), "The Trouble with Physics", ‎Houghton Mifflin Harcourt. ‎

‎[249] ‎ Lee Smolin, (2005), "The case for background ‎independence", https://arxiv.org/pdf/hep-‎th/0507235v1. ‎

‎[250] ‎ Peter Collas, (1977), "General relativity in two- and ‎three-dimensional space-times", American Journal ‎of Physics, Vol. 45, No.9, September 1977. ‎

‎[251] ‎ S. Carlip, (2004), "Quantum Gravity in 2+1 ‎Dimensions: The Case of a Closed Universe", ‎https://arxiv.org/pdf/gr-qc/0409039v2. ‎

‎[252] ‎ Zhengjun xi, Yongming Li and Heng Fan, (2015), ‎‎"Quantum coherence and correlations in quantum ‎system", Nature, Scientific Reports volume 5, ‎Article number: 10922. ‎

‎[253] ‎ Dai, J., Leigh, R. G., and Polchinski, J. (1989). "New ‎connections between string theories", Modern ‎Physics Letters A, 04(21): 2073-2083. ‎

‎[254] ‎ Anze Zaloznik, (2012), "Kaluza-Klein Theory", ‎http://mafija.fmf.uni-‎lj.si/seminar/files/2011_2012/KaluzaKlein_theory.pdf. Retrieved Jan 12, 2020. ‎

‎[255] ‎ Edward Witten, (1995), "String Theory Dynamics In ‎Various Dimensions", https://arxiv.org/pdf/hep-‎th/9503124v2. ‎

‎[256] ‎ David Bailint and Alex Love, (1987), "Kaluza-Klein ‎theories", Rep. Prog. Phys. 50 (1987) 1087-1170. ‎

‎[257] ‎ Alain Aspect, (2004), "Bell's Theorem: The Naive ‎View Of An Experimentalist", ‎https://arxiv.org/pdf/quant-ph/0402001v1. ‎

‎[258] ‎ Julia Cramer, Christian Schiitte-Niitgen, (2010), ‎‎"Experimental Violations of Bell's Inequalities", ‎https://qudev.phys.ethz.ch/static/content/courses/QSIT10/presentations/QSIT-BellsInequality.pdf. ‎Retrieved on Jan 12, 2020. ‎

‎[259] ‎ W.M. Stuckey, Michael Silberstein, Timothy ‎McDevitt and Ian Kohler, (2019), "Why the ‎Tsirelson Bound? Bub's Question and Fuchs' ‎Desideratum", https://arxiv.org/pdf/1807.09115v7. ‎

‎[260] ‎ Katrin Becker, Melanie Becker and John L. ‎Schwarz, (2007), "String Theory and M-Theory. A ‎Modern Introduction", Cambridge University Press. ‎

‎[261] ‎ Rahul Sawant, Joseph Samuel, Aninda Sinha, ‎Supurna Sinha, Urbasi Sinha, (2014), "Non-classical ‎paths in interference experiments", ‎https://arxiv.org/pdf/1308.2022v2. ‎

‎[262] ‎ R. Wald, (1980), "Quantum gravity and time ‎reversibility", Phys. Rev. D21 (1980), 2742. ‎

‎[263] ‎ Nick E. Mavromatos, (2005), "CPT Violation: ‎Theory and Phenomenology", ‎https://arxiv.org/pdf/hep-ph/0504143v1. ‎

‎[264] ‎ Jaeger, Gregg (2019). "Are virtual particles less ‎real?", Entropy, 21 (2): 141. ‎

‎[265] ‎ Mary Bell , Shan Gao, (2016), "Quantum ‎Nonlocality and Reality. 50 Years of Bell's ‎Theorem", Cambridge University Press. ‎

‎[266] ‎ H. Reeh, S. Schlieder, (1961), "Bemerkungen zur ‎unitaraquivalenz von lorentzinvarianten feldern", Il ‎Nuovo Cimento (1955-1965), December 1961, ‎Volume 22, Issue 5, pp 1051-1068. ‎

‎[267] ‎ Joseph J. Bisognano and Cyvind H. Wichmann, ‎‎(1975), "On The Duality Condition For A Hermitian ‎Scalar Field", Journal of Mathematical Physics, Vol. ‎‎16, No. 4, 985 – 1007. ‎

‎[268] ‎ Wikipedia, "Reeh-Schlieder theorem", ‎https://en.wikipedia.org/wiki/Reeh-‎Schlieder_theorem. Retrieved Nov. 19, 2019. ‎

‎[269] ‎ nLab, "Reeh-Schlieder theorem", ‎https://ncatlab.org/nlab/show/Reeh-‎Schlieder+theorem. Retrieved Nov. 19, 2019. ‎

‎[270] ‎ Luciano Combi, Gustavo E. Romeroa, (2017), "Is ‎Teleparallel Gravity really equivalent to General ‎Relativity?", https://arxiv.org/pdf/1708.04569v1. ‎

‎[271] ‎ V. C. De Andrade, L. C. T. Guillen and J. G. Pereira, ‎‎(2000), "Teleparallel Gravity: An Overview", ‎https://arxiv.org/pdf/gr-qc/0011087v1. ‎

‎[272] ‎ Bo-Sture K. Skagerstam, (1976), "Some remarks ‎concerning the question of localization of ‎elementary particles", International Journal of ‎Theoretical Physics, 15(3):213-230, February 1976. ‎

‎[273] ‎ Hans Halvorson, Rob Clifton, (2001), "No place for ‎particles in relativistic quantum theories?", ‎https://arxiv.org/pdf/quant-ph/0103041v1. ‎

‎[274] ‎ Martin Schottenloher, (2008), "A Mathematical ‎Introduction to Conformal Field Theory (Lecture ‎Notes in Physics)", Springer; 2nd edition (November ‎‎17, 2008). ‎

‎[275] ‎ Makoto Natsuume, (2015), "AdS/CFT Duality User ‎Guide (Lecture Notes in Physics)", Springer; 2015 ‎edition (April 2, 2015). ‎

‎[276] ‎ Horatiu Nastase, (2007), "Introduction to AdS-CFT", ‎https://arxiv.org/pdf/0712.0689v2

‎[277] ‎ John Campbell,(2018),"The Black Book of ‎Quantum Chromodynamics: A Primer for the LHC ‎Era", Oxford University Press. ‎

‎[278] ‎ Walter Greiner, Stefan Schramm, Eckart Stein, ‎‎(2007), "Quantum Chromodynamics", Springer. ‎

‎[279] ‎ Jared Kaplan, (2016), "QFT Lectures Notes", ‎Department of Physics and Astronomy, Johns ‎Hopkins University. ‎

‎[280] ‎ Frank Wilczek, (2012), "Origins of Mass", ‎https://arxiv.org/pdf/1206.7114v2. ‎

‎[281] ‎ Diego Bettoni, (2012), "Masses and the Higgs ‎Mechanism", http://www.fe.infn.it/-‎bettoni/particelle/Strong/HiggsMechanism.pdf. ‎Retrieved on January 20, 2020. ‎

‎[282] ‎ Magdalena Zych, Caslav Brukner, (2015), ‎‎"Quantum formulation of the Einstein Equivalence ‎Principle", https://arxiv.org/pdf/1502.00971v1. ‎

‎[283] ‎ A. Einstein, " Uber das Relativitatsprinzip und die ‎aus demselben gezogenen Folgerungen". Jahrb. f. ‎Rad. und Elekt. 4, 411 (1907). ‎

‎[284] ‎ Wikipedia, "Equivalence principle", ‎https://en.wikipedia.org/wiki/Equivalence_principle. Retrieved on January 20, 2020. ‎

‎[285] ‎ L. Prochaska, x. Li, D. C. MacFarland, A. M. ‎Andrews, M. Bonta, E. F. Bianco, S. Yazdi, W. ‎Schrenk, H. Detz, A. Limbeck, Q. Si, E. Ringe, G. ‎Strasser, J. Kono, S. Paschen, (2018), "Singular ‎charge fluctuations at a magnetic quantum critical ‎point", https://arxiv.org/pdf/1808.02296v1. ‎

‎[286] ‎ P. W. Anderson, (1963), "Plasmons, Gauge ‎Invariance, and Mass", Phys. Rev. 130, 439. ‎

‎[287] ‎ Yao Wang, Yi-Jun Chang, Jun Gao, Yong-Heng Lu, ‎Zhi-Qiang Jiao, Fang-Wei Ye, xian-Min Jin, (2019), ‎‎"Observation of Magic Angle and Wall State in ‎Twisted Bilayer Photonic Graphene", ‎https://arxiv.org/pdf/1911.09174v1. ‎

‎[288] ‎ F. W. Hehl, (1973), "Spin and torsion in general ‎relativity: I. Foundations", General Relativity and ‎Gravitation. July 1973, Volume 4, Issue 4, pp 333-‎‎349. ‎

‎[289] ‎ Friedrich W. Hehl, Paul von der Heyde, and G. ‎David Kerlick, (1976), "General relativity with spin ‎and torsion: Foundations and prospects", Reviews ‎of Modern Physics, Vol. 48, No. 3, July 1976. ‎

‎[290] ‎ Stefan Lippoldt, 2016, "Fermions in curved ‎spacetimes", Thesis, Friedrich-Schiller-Universitat ‎Jena. ‎

‎[291] ‎ Stefano Lucat, Tomislav Prokopec, (2015), ‎‎"Cosmological singularities and bounce in Cartan-‎Einstein theory", ‎https://arxiv.org/pdf/1512.06074v1. ‎

‎[292] ‎ Yi-Fu Cai, Salvatore Capozziello, Mariafelicia De ‎Laurentis, Emmanuel N. Saridakis, (2016), "f(T) ‎teleparallel gravity and cosmology", ‎https://arxiv.org/pdf/1511.07586v2. ‎

‎[293] ‎ Eckehard W. Mielke, (2013), "Is Einstein-Cartan ‎Theory Coupled to Light Fermions Asymptotically ‎Safe?", Journal of Gravity, Volume 2013, Article ID ‎‎812962. ‎

‎[294] ‎ M. Gockeler, T. Schiicker, (1987), "Differential ‎Geometry, Gauge Theories and Gravity", ‎Crambridge University Press. ‎

‎[295] ‎ Andrzej Trautman, (2006), "Einstein-Cartan ‎Theory", https://arxiv.org/pdf/gr-qc/0606062v1

‎[296] ‎ Nikodem Poplawski, (2012), "Nonsingular, big-‎bounce cosmology from spinor-torsion coupling", ‎https://arxiv.org/pdf/1111.4595v2. ‎

‎[297] ‎ Jordan L. Cubero, Nikodem J. Poplawski, (2019), ‎‎"Analysis of big bounce in Einstein-Cartan ‎cosmology", https://arxiv.org/pdf/1906.11824v1. ‎

‎[298] ‎ Ilya L. Shapiro, Poliane M. Teixeira, (2014), ‎‎"Quantum Einstein-Cartan theory with the Holst ‎term", https://arxiv.org/pdf/1402.4854v2

‎[299] ‎ Marc Geiller and Karim Noui, (2013), "A note on the ‎Holst action, the time gauge, and the Barbero-‎Immirzi parameter", ‎https://arxiv.org/pdf/1212.5064v2

‎[300] ‎ Danilo Jimenez Rezende, Alejandro Perez, (2009), ‎‎"4d Lorentzian Holst action with topological terms", ‎https://arxiv.org/pdf/0902.3416v1. ‎

‎[301] ‎ Ilya L. Shapiro, (1998), "Torsion: theory and ‎possible observables", https://arxiv.org/pdf/hep-‎th/9811072v1. ‎

‎[302] ‎ Bahram Mashhoon, (2001), ‎‎"Gravitoelectromagnetism: A Brief Review", ‎https://arxiv.org/pdf/gr-qc/0311030v2. ‎

‎[303] ‎ Ignazio Ciufolini and John Archibald Wheeler, ‎‎(1995), "Gravitation and Inertia", Princeton ‎University Press. ‎

‎[304] ‎ david G. Boulware and S. Deser, (1975), "Classical ‎General Relativity Derived from Quantum Gravity", ‎Annals Of Physics, 89, 193-240 (1975). ‎

‎[305] ‎ V.M. Red'kov, N.G. Tokarevskaya, V.V. Kisel, ‎‎(2011), "Graviton in a Curved Space-Time ‎Background and Gauge Symmetry", ‎https://arxiv.org/pdf/1109.1382v1. ‎

‎[306] ‎ Per Kraus and E. T. Tomboulis, (2002), "Photons and ‎Gravitons as Goldstone Bosons, and the ‎Cosmological Constant", https://arxiv.org/pdf/hep-‎th/0203221v1. ‎

‎[307] ‎ Claudia de Rham, Gregory Gabadadze, Andrew J. ‎Tolley, (2010), "Resummation of Massive Gravity", ‎https://arxiv.org/pdf/1011.1232v2. ‎

‎[308] ‎ Cianfrani Francesco, Giovanni Montani, and Lecian ‎Orchidea Maria, (2014), "Canonical Quantum ‎Gravity: Fundamentals and Recent Developments", ‎World Scientific Publishing Company, Incorporated. ‎

‎[309] ‎ xi Dong, Eva Silverstein, Gonzalo Torroba, (2018), ‎‎"De Sitter Holography and Entanglement Entropy", ‎https://arxiv.org/pdf/1804.08623v2. ‎

‎[310] ‎ Brian Clegg, (2019), "Dark Matter and Dark Energy: ‎The Hidden 95% of the Universe", Icon Books Ltd. ‎

‎[311] ‎ J. D. Bekenstein, (1973), "Black Holes and ‎Entropy", Phys. Rev. D7 (1973) 2333. ‎

‎[312] ‎ Jacob D. Bekenstein, (1974), "Generalized second ‎law of thermodynamics in black-hole physics", ‎Physical Review D, Volume 9, Number 12, 15 June ‎‎1974. ‎

‎[313] ‎ S. W. Hawking, (1975), "Particle Creation by Black ‎Holes", Commun. math. Phys. 43, 199-220 (1975). ‎

‎[314] ‎ Piotr T. Chru±ciel, Erwann Delay, Gregory J. ‎Galloway, Ralph Howard, (2000), "Regularity of ‎Horizons and The Area Theorem", ‎https://arxiv.org/pdf/gr-qc/0001003v2. ‎

‎[315] ‎ G. W. Gibbons' and S. W. Hawking, (1977), ‎‎"Cosmological event horizons, thermodynamics, ‎and particle creation", Physical Review D, Volume ‎‎15, Number 10. ‎

‎[316] ‎ Ted Jacobson, (2000) ,"On the Nature of Black Hole ‎Entropy", https://arxiv.org/pdf/gr-qc/9908031v2. ‎

‎[317] ‎ Ryu Shinsei, Takayanagi Tadashi, (2006), "Aspects ‎of Holographic Entanglement Entropy". Journal of ‎High Energy Physics., 2006 (8). ‎

‎[318] ‎ L. Susskind, (1994), "The World as a Hologram", ‎https://arxiv.org/pdf/hep-th/9409089v2. ‎

‎[319] ‎ Paul Dirac, (1931), "Quantised Singularities in the ‎Electromagnetic Field". Proc. Roy. Soc., (London) A ‎‎133, 60 (1931). ‎

‎[320] ‎ Yang C.N. (1996), "Magnetic Monopoles, Fiber ‎Bundles, and Gauge Fields". In: Newman H.B., ‎Ypsilantis T. (eds) "History of Original Ideas and ‎Basic Discoveries in Particle Physics". NATO ASI ‎Series (Series B: Physics), vol 352. Springer, Boston, ‎MA. ‎

‎[321] ‎ ‎"Magnetic monopole", Wikipedia, ‎https://en.wikipedia.org/wiki/Magnetic_monopole. ‎Retrieved March 10, 2020.‎

‎[322] ‎ Bryce DeWitt, (2013), "The Global Approach to ‎Quantum Field Theory", Oxford U. Press, New York, ‎‎2003. Vols. 1 and 2. ‎

‎[323] ‎ Richard Feynman, (2002), "Feynman Lectures On ‎Gravitation", Westview Press; 1 edition (June 20, ‎‎2002). ‎

‎[324] ‎ I. I. Bigi and A. I. Sanda, (2009), "CP Violation", ‎Cambridge University Press. ‎

‎[325] ‎ Alberto Rojo, Anthony Bloch (2018), "The ‎Principle of Least Action: History and Physics", ‎Cambridge University Press. ‎

‎[326]‎ ‎ Francisco S. N. Lobo, Gonzalo J. Olmo, D. Rubiera-‎Garcia, (2014), "Microscopic wormholes and the ‎geometry of entanglement", ‎https://arxiv.org/pdf/1402.5099v2. ‎

‎[327] ‎ Fabrizio Tamburini, Ignazio Licata, (2019), "General ‎Relativistic Wormhole Connections from Planck-‎Scales and the ER = EPR Conjecture", ‎https://arxiv.org/pdf/1912.12424v1. ‎

‎[328] ‎ Jiunn-Wei Chen, Sichun Sun, Yun-Long Zhang, ‎‎(2016), "Bell Inequality in the Holographic EPR ‎Pair", https://arxiv.org/pdf/1612.09513v3

‎[329] ‎ Hilary Greaves and Teruji Thomas, (2014), "On the ‎CPT theorem", Studies in History and Philosophy of ‎Modern Physics 45, (2014), 46-65. ‎

‎[330] ‎ Streater, R. and Wightman, A., (1964), "PCT, spin ‎and statistics, and all that". NewYork: ‎W.A.Benjamin. ‎

‎[331] ‎ Stefan Hollands, (2004), "PCT Theorem for the ‎Operator Product Expansion in Curved Spacetime", ‎Commun. Math. Phys. 244, 209-244 (2004). ‎

‎[332] ‎ Wheeler, John Archibald (1963). ‎‎"Geometrodynamics". New York: Academic Press. ‎

‎[333] ‎ Edward Witten, (1982), "Instability of the Kaluza-‎Klein vacuum", Nuclear Physics B, Volume 195, ‎Issue 3, 22 February 1982, Pages 481-492. ‎

‎[334] ‎ Malcolm Fairbairn, Robert Hogan, (2014), ‎‎"Electroweak Vacuum Stability in light of BICEP2", ‎https://arxiv.org/pdf/1403.6786v3. ‎

‎[335] ‎ John G. Cramer, (2016),"The Quantum Handshake: ‎Entanglement, Nonlocality and Transactions", ‎Springer. ‎

‎[336] ‎ Graham P. Collins, (2017), "The Many ‎Interpretations of Quantum Mechanics", Scientific ‎American, Nov 2017. ‎

‎[337] ‎ D.Z. Albert, Y. Aharonov, S. D'Amato. Phys. Rev. ‎Lett. 54, 5 (1985), "Curious New Statistical ‎Prediction of Quantum Mechanics", Phys. Rev. Lett. ‎‎54, 5. ‎

‎[338] ‎ Y. Aharonov, P.G. Bergmann, J.L. Lebowitz, ‎‎(1964),"Time Symmetry in the Quantum Process of ‎Measurement", Phys. Rev. 134, B1410 (1964). ‎

‎[339] ‎ Padmanabhan, T., (1994), "Path Integral for the ‎relativistic particle and harmonic oscillators", ‎Found Phys 24, 1543-1562 (1994). ‎

‎[340] ‎ G Rengaraj, U Prathwiraj, Surya Narayan Sahoo, R ‎Somashekhar and Urbasi Sinha, (2018), "Measuring ‎the deviation from the superposition principle in ‎interference experiments", New J. Phys. 20 (2018). ‎

‎[341] ‎ John Preskill, (1984), "Magnetic Monopoles", Ann. ‎Rev. Nucl. Part. Sci., 1984. 34:461-530. ‎

‎[342] ‎ Ivan Agullo, Adrian del Rio, and Jose Navarro-‎Salas, (2017), "Electromagnetic Duality Anomaly in ‎Curved Spacetimes", Phys. Rev. Lett. 118, 111301. ‎

‎[343] ‎ J. L. Hewett et al. (2014), "Planning the Future of ‎U.S. Particle Physics (Snowmass 2013): Chapter 2: ‎Intensity Frontier", ‎https://arxiv.org/pdf/1401.6077v1. ‎

‎[344] ‎ Rune Fisker, (2016), "Grand Unification Dream Kept ‎at Bay", https://www.quantamagazine.org/no-‎proton-decay-means-grand-unification-must-wait-‎‎20161215/. Retrieved on Nov 8, 2019. ‎

‎[345] ‎ A. A. Saharian, "Quantum Field Theory In Curved ‎Spacetime", ‎http://training.hepi.tsu.ge/rtn/activities/sources/LectQFTrev.pdf. Retrieved March 5, 2020. ‎

‎[346] ‎ Dag-Morten Sj0str0m, (2013), "Bosons and ‎Fermions in Curved Spacetime", Physics Thesis, ‎Norwegian University of Science and Technology, ‎May 2013. ‎

‎[347] ‎ Wikipedia, "Bimetric gravity", ‎https://en.wikipedia.org/wiki/Bimetric_gravity. ‎Retrieved on January 23, 2020. ‎

‎[348] ‎ Rosen, Nathan (1973), "A bi-metric Theory of ‎Gravitation", Gen. Rel. Grav., 4 (6): 435-447. ‎

‎[349] P. C. Aichelburg and R. U. Sexl, (1971), "On the ‎Gravitational Field of a Massless Particle", General ‎Relativity and Gravitation, Vol. 2, No. 4 (1971), pp. ‎‎303-312. ‎

‎[350] ‎ N. A. Voronov and I. Yu. Kobzarev, (1973), "On the ‎gravitational field of a massless particle", JETP, ‎‎1973, Vol. 37, No. 6, p. 953. ‎

‎[351] ‎ W. B. Bonnor, (1969), "The Gravitational Field of ‎Light", Comm. Math. Phys. 13, 163-174. ‎

‎[352] ‎ Venzo de Sabbata, C Sivaram, (1994), "Spin and ‎Torsion in Gravitation", World Scientific. ‎

‎[353] ‎ R. T. Hammond, (2010), "The necessity of torsion in ‎gravity", International Journal of Modern Physics D ‎Vol. 19, No. 14 (2010) 2413-2416. ‎

‎[354] ‎ A. Trautman, (1973), "Spin and Torsion May avert ‎Gravitational Singularities", Nature Physical ‎Science, Vol. 142, 7-8. ‎

‎[355] ‎ E.J. Beggs, S. Majid, (2009), "*-Compatible ‎Connections in Noncommutative Riemannian ‎Geometry", https://arxiv.org/pdf/0904.0539v2. ‎

‎[356] ‎ Suraj N. Gupta, (1954), "Gravitation and ‎Electromagnetism", Phys. Rev., Vol 96, N. 6. ‎

‎[357] ‎ S. Weinberg, (1965), "Photons and. Gravitons in ‎Perturbation Theory: Derivation of Maxwell's and ‎Einstein's Equations", Phys. Rev., Vol 138, N. 4B. ‎

‎[358] ‎ Ashtekar A. and Ranjeet S. Tate, (1991), "Lectures ‎on nonperturbative canonical gravity", World ‎Scientific Pub Co Inc. ‎

‎[359] ‎ Flip Tanedo, (2011), "Helicity, Chirality, Mass, and ‎the Higgs", Quantum Diaries, ‎https://www.quantumdiaries.org/2011/06/19/helicity-chirality-mass-and-the-higgs/. Retrieved on ‎November 10, 2019. ‎

‎[360] ‎ Wikipedia, "Belinfante-Rosenfeld stress-energy ‎tensor", ‎https://en.wikipedia.org/wiki/Belinfante%E2%80%‎‎93Rosenfeld_stress%E2%80%93energy_tensor. ‎Retrieved December 12, 2019. ‎

‎[361] ‎ The reference frame, (2019), "No global symmetries ‎in QG 2019", ‎https://motls.blogspot.com/2019/05/no-global-‎symmetries-in-qg-2019.html. Retrieved on ‎December 11, 2019. ‎

‎[362] ‎ Daniel Harlow, Hirosi Ooguri, (2018), "Symmetries ‎in quantum field theory and quantum gravity", ‎https://arxiv.org/pdf/1810.05338v2. ‎

‎[363] ‎ Lee C. Loveridge, (2004), "Physical and Geometric ‎Interpretations of the Riemann Tensor, Ricci Tensor, ‎and Scalar Curvature", https://arxiv.org/pdf/gr-‎qc/0401099v1. ‎

‎[364] ‎ John M. Lee, (2018), "Introduction to Riemannian ‎Manifolds", Springer. ‎

‎[365] ‎ Rosen, Nathan (1940). "General Relativity and Flat ‎Space. I". Physical Review, 57 (2): 147-150. ‎

‎[366] ‎ Zwiebach, Barton (2003). "A First Course in String ‎Theory". Cambridge University Press. ‎

‎[367] ‎ Edmund Bertschinger, (2002), "Symmetry ‎Transformations, the Einstein-Hilbert Action, and ‎Gauge Invariance", Physics 8.962, MIT. ‎

‎[368] ‎ Bronstein M, (1936), "Quantentheorie schwacher ‎Gravitationsfelder", Phys. Z. Sowjetunion 9 ,140-‎‎157. ‎

‎[369] ‎ Bronstein M P, (1936), "Kvantovanie ‎gravitatsionnykh voln" (Quantization of ‎Gravitational Waves), Zh. Eksp. Tear. Fiz. 6, 195. ‎

‎[370] ‎ Paul Sutter, (2020), "Is string theory worth it?", ‎https://www.space.com/is-string-theory-worth-‎it.html. Retrieved on May 05, 2020. ‎

‎[371] ‎ Tamiaki Yoneya, (1974), "Connection of Dual ‎Models to Electrodynamics and Gravidynamics", ‎Progress of Theoretical Physics, Vol. 51, No. 6. ‎

‎[372] ‎ J. Scherk and J. H. Schwarz, (1974), "Dual Models ‎for Non-Hadrons", Nuclear Physics BS1 (1974) I18-‎‎144. ‎

‎[373] ‎ Yaakov Y. Fein et al. (2019), "Quantum ‎superposition of molecules beyond 25 kDa", Nature ‎Physics. ‎

‎[374] ‎ C. F. Ockeloen-Korppi, E. Damskagg, J.-M. ‎Pirkkalainen, A. A. Clerk, F. Massel, M. J. Woolley, ‎M. A. Sillanpaa, (2017), "Entangled massive ‎mechanical oscillators", ‎https://arxiv.org/pdf/1711.01640v1. ‎

‎[375] ‎ Claudia de Rham, (2014), "Massive Gravity", ‎https://arxiv.org/pdf/1401.4173v2. ‎

‎[376] ‎ Kurt Hinterbichler, (2011), "Theoretical Aspects of ‎Massive Gravity", ‎https://arxiv.org/pdf/1105.3735v2

‎[377] ‎ Fierz, M. and Pauli, W., (1939), "On relativistic wave ‎equations for particles of arbitrary spin in an ‎electromagnetic field", Proc. Roy. Soc. Lond., A173, ‎‎211-232. ‎

‎[378] ‎ Stephen W. Hawking, Malcolm J. Perry, Andrew ‎Strominger, (2016), "Soft Hair on Black Holes", ‎https://arxiv.org/pdf/1601.00921v1. ‎

‎[379] ‎ Eddington, A. (1935). "The Nature of the Physical ‎World". MacMilan. ‎

‎[380] ‎ Wikipedia, "Rotating black hole", ‎https://en.wikipedia.org/wiki/Rotating_black_hole. ‎Retrieved on February, 17, 2019. ‎

‎[381] ‎ Wikipedia, "Charged black hole", ‎https://en.wikipedia.org/wiki/Charged_black_hole. ‎Retrieved on February, 17, 2019. ‎

‎[382] ‎ Jacob D. Bekenstein, (1997), "Quantum Black Holes ‎as Atoms", https://arxiv.org/pdf/gr-qc/9710076v2. ‎

‎[383] ‎ Radhakrishnan C. Nair, 92006), "Photon as a black ‎hole", SFIN A 1 (2007) 321-326. ‎

‎[384] ‎ A.Burinskii, (2007), "Kerr Geometry as Space-Time ‎Structure of the Dirac Electron", ‎https://arxiv.org/pdf/0712.0577v1. ‎

‎[385] ‎ Burinskii, Alexander, (2008), "The Dirac-Kerr-‎Newman electron", ‎https://arxiv.org/pdf/0507109v4. ‎

‎[386] ‎ J. Makela, P. Repo, M. Luomajoki, J.Piilonen, ‎‎(2000), "Quantum-mechanical model of the Kerr-‎Newman black hole", https://arxiv.org/pdf/gr-‎qc/0012055v1. ‎

‎[387] ‎ Wikipedia, "Black hole electron", ‎https://en.wikipedia.org/wiki/Black_hole_electron. ‎Retrieved on April 13, 2020. ‎

‎[388] ‎ Richard G. Milner, (2013), "A Short History of ‎Spin", https://arxiv.org/pdf/1311.5016v1. ‎

‎[389] ‎ Wikipedia, "Spin (physics)", ‎https://en.wikipedia.org/wiki/Spin_(physics). ‎Retrieved on May 7, 2020. ‎

‎[390] ‎ Jean-Marc Levy-Leblond, (1967), "Nonrelativistic ‎Particles and Wave Equations", Commun. math. ‎Phys. 6. ‎

‎[391] ‎ von W. Gordon, (1928), "Der Strom der Diracschen ‎Elektronentheorie", Z. Phys., 50, 630 (1928). ‎

‎[392] ‎ F.J. Belifante, (1939), "On the spin Angular ‎Momentum of Mesons", Physica, VI, N9. ‎

‎[393] ‎ L. Rosenfeld, (1940), "On the energy-momentum ‎tensor", Mem. Acad. Royal Belg., 18, N6. ‎

‎[394] ‎ H.C. Ohanian, (1984), "What is spin?", Am. J. Phys., ‎‎54, (6), 1986. ‎

‎[395] ‎ Edouard Manoukian, (2016), "Quantum Field ‎Theory I: Foundations and Abelian and Non-‎Abelian Gauge Theories", Springer. ‎

‎[396] ‎ Aneesh Manohar and Howard Georgi, (1984), ‎‎"Chiral Quarks and The Non-Relativistic Quark ‎Model", Nuclear Physics B234 189-212. ‎

‎[397] ‎ W. Rory Coker, "Chiral Symmetry Breaking!", ‎https://web2.ph.utexas.edu/-‎coker2/index.files/chiralsb.htm. Retrieved, ‎November 10, 2019. ‎

‎[398] ‎ David Tong, (2018), "Lectures on Gauge Theory", ‎http://www.damtp.cam.ac.uk/user/tong/gaugetheory‎.html. Retrieved on November 10, 2019. ‎

‎[399] ‎ S. Weinberg, (1964), "Derivation of Gauge ‎Invariance and The Equivalence Principle from ‎Lorentz Invariance and the S-Matrix", Phys. Letters, ‎Vol 9, N. 4. ‎

‎[400] ‎ M.C. Gonzalez-Garcia and M. Yokoyama, (2019), ‎‎"14. Neutrino Masses, Mixing, and Oscillations", in ‎M. Tanabashi et al. (Particle Data Group), Phys. Rev. ‎D 98, 030001 (2018) and (2019) update. ‎

‎[401] ‎ Sidney Coleman, (1977), "Fate of the false vacuum: ‎Semiclassical theory", Phys. Rev. D 15, 2929. ‎

‎[402] ‎ Curtis G. Callan, Jr. and Sidney Coleman, (1977), ‎‎"Fate of the false vacuum. II. First quantum ‎corrections", Phys. Rev. D 16, 1762. ‎

‎[403] ‎ The reference frame, (2011), "Bubble of nothing and ‎other catastrophes", ‎https://motls.blogspot.com/2011/10/bubble-of-‎nothing-and-other.html. Retrieved on April 14, ‎‎2020. ‎

‎[404] ‎ J.R. Espinosa, G. Giudice, A. Riotto, (2017), ‎‎"Cosmological implications of the Higgs mass ‎measurement", https://arxiv.org/pdf/0710.2484v1. ‎

‎[405] ‎ Carlos Mergulhao Jr., (1995), "Neutrino Helicity ‎Flip in a Curved Space-time", General Relativity ‎and Gravitation volume 27, pages 657-667. ‎

‎[406] ‎ Steven Weinberg, (2020), "Models of Lepton and ‎Quark Masses", https://arxiv.org/pdf/2001.06582v1. ‎

‎[407] ‎ J. Ambjorn, J. Jurkiewicz, R. Loll, (2005), ‎‎"Reconstructing the Universe", ‎https://arxiv.org/pdf/hep-th/0505154v2.

Published

2022-12-01

How to Cite

Maes , S. H. (2022). Quantum Gravity Emergence from Entanglement in ‎ a Multi-Fold Universe: Quantum Gravity. Hyperscience International Journal, 2(4), 136–219. https://doi.org/10.55672/hij2022pp136-219